保姆级教程:利用Ollama与Open-WebUI本地部署 DeedSeek-R1大模型

1. 安装Ollama

根据自己的系统下载Ollama,我的是Linux,所以我使用如下命令进行下载安装:

bash 复制代码
curl -fsSL https://ollama.com/install.sh | sh

2. 安装Open-WebUI

使用 Docker 的方式部署 open-webui ,使用gpu的话按照如下命令进行

bash 复制代码
sudo docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda

官方的地址可能会出现网络问题,可以使用国内地址:

bash 复制代码
sudo docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always  registry.cn-shenzhen.aliyuncs.com/funet8/open-webui:cuda

但是我遇到了一个问题,如下

应该是和显卡有关。

需要安装nvidia-container-toolkit并配置docker以使用该工具包。

参考官网给出的指南:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

bash 复制代码
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

如果你遇到了下面这个报错,你就在前面加个sudo重新运行一下,可能还需要覆盖一下历史配置,直接覆盖就行了。

接下来进行安装。

bash 复制代码
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

然后还需要编辑一下docker的配置文件令docker运行时连接到gpu

bash 复制代码
sudo vim /etc/docker/daemon.json

将下面这些添加进去

json 复制代码
{
  "default-runtime": "nvidia",
  "runtimes": {
    "nvidia": {
      "path": "nvidia-container-runtime",
      "runtimeArgs": []
    }
  }
}

重启docker

bash 复制代码
sudo systemctl restart docker

启动open-webui

bash 复制代码
sudo docker start open-webui

3. 部署DeepSeek-R1

通过在浏览器中输入 http://localhost:3000/ 进入到 open-webui 界面,然后注册一个管理员账号并登录,然后进入设置->管理员设置->外部连接,在 管理 Ollama API 连接 中配置,可以通过ip+端口连接ollama并加载模型。

但是可能会遇到无法连接到ollama的问题,可以进行以下修改以进行ollama环境的配置。

bash 复制代码
sudo vim /etc/systemd/system/ollama.service

添加Environment="OLLAMA_HOST=0.0.0.0"

然后重启

bash 复制代码
systemctl daemon-reload

systemctl restart ollama

systemctl stop ollama

systemctl start ollama

启动一个deepseek模型

bash 复制代码
ollama run deepseek-r1:8b

这一步其实打开了deepseek-r1大模型对话的终端界面,在这里也可以进行问答了.

不过通过open-webui可以打开图形化的对话界面,会更加舒适。

点击刷新符号验证是否连接到服务器

如果这里你无法连接成功,可以将URL改为你的ip+端口,端口号这里一般是11434。

现在就可以在对话界面进行使用了。

相关推荐
jl48638211 分钟前
打造医疗设备的“可靠视窗”:医用控温仪专用屏从抗菌设计到EMC兼容的全链路解析
大数据·运维·人工智能·物联网·人机交互
kiro_10236 分钟前
BGRtoNV12与NV12toBGR互转函数
人工智能·opencv·计算机视觉
码农三叔6 分钟前
(9-1)电源管理与能源系统:电池选择与安全
人工智能·嵌入式硬件·安全·机器人·能源·人形机器人
司沐_Simuoss8 分钟前
Text to SQL系统的千层套路~
数据库·人工智能·sql·语言模型·系统架构
北京阿法龙科技有限公司9 分钟前
工业场景下AR+AI图像识别:精准选型赋能运维与质检
运维·人工智能·ar
才兄说30 分钟前
机器人租售怎么嵌?按流程节点
人工智能
logic_533 分钟前
关于VIT为啥可以用卷积代替第一层嵌入层
人工智能·神经网络·cnn
小康小小涵34 分钟前
改进型深度Q-网格DQN和蒙特卡洛树搜索MCTS以及模型预测控制MPC强化学习的机器人室内导航仿真
人工智能·机器人·自动驾驶
PNP机器人35 分钟前
突破机器人操作瓶颈!接触感知神经动力学,让仿真与现实无缝对齐
人工智能·机器人
美狐美颜sdk42 分钟前
直播美颜sdk与智能美妆技术解析:实时人脸算法如何驱动新一代互动体验
人工智能·音视频·美颜sdk·视频美颜sdk·美狐美颜sdk