保姆级教程:利用Ollama与Open-WebUI本地部署 DeedSeek-R1大模型

1. 安装Ollama

根据自己的系统下载Ollama,我的是Linux,所以我使用如下命令进行下载安装:

bash 复制代码
curl -fsSL https://ollama.com/install.sh | sh

2. 安装Open-WebUI

使用 Docker 的方式部署 open-webui ,使用gpu的话按照如下命令进行

bash 复制代码
sudo docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda

官方的地址可能会出现网络问题,可以使用国内地址:

bash 复制代码
sudo docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always  registry.cn-shenzhen.aliyuncs.com/funet8/open-webui:cuda

但是我遇到了一个问题,如下

应该是和显卡有关。

需要安装nvidia-container-toolkit并配置docker以使用该工具包。

参考官网给出的指南:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

bash 复制代码
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

如果你遇到了下面这个报错,你就在前面加个sudo重新运行一下,可能还需要覆盖一下历史配置,直接覆盖就行了。

接下来进行安装。

bash 复制代码
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

然后还需要编辑一下docker的配置文件令docker运行时连接到gpu

bash 复制代码
sudo vim /etc/docker/daemon.json

将下面这些添加进去

json 复制代码
{
  "default-runtime": "nvidia",
  "runtimes": {
    "nvidia": {
      "path": "nvidia-container-runtime",
      "runtimeArgs": []
    }
  }
}

重启docker

bash 复制代码
sudo systemctl restart docker

启动open-webui

bash 复制代码
sudo docker start open-webui

3. 部署DeepSeek-R1

通过在浏览器中输入 http://localhost:3000/ 进入到 open-webui 界面,然后注册一个管理员账号并登录,然后进入设置->管理员设置->外部连接,在 管理 Ollama API 连接 中配置,可以通过ip+端口连接ollama并加载模型。

但是可能会遇到无法连接到ollama的问题,可以进行以下修改以进行ollama环境的配置。

bash 复制代码
sudo vim /etc/systemd/system/ollama.service

添加Environment="OLLAMA_HOST=0.0.0.0"

然后重启

bash 复制代码
systemctl daemon-reload

systemctl restart ollama

systemctl stop ollama

systemctl start ollama

启动一个deepseek模型

bash 复制代码
ollama run deepseek-r1:8b

这一步其实打开了deepseek-r1大模型对话的终端界面,在这里也可以进行问答了.

不过通过open-webui可以打开图形化的对话界面,会更加舒适。

点击刷新符号验证是否连接到服务器

如果这里你无法连接成功,可以将URL改为你的ip+端口,端口号这里一般是11434。

现在就可以在对话界面进行使用了。

相关推荐
九亿AI算法优化工作室&20 分钟前
GWO优化LSBooST回归预测matlab
人工智能·python·算法·机器学习·matlab·数据挖掘·回归
东锋1.31 小时前
Ollama 安装教程:轻松开启本地大语言模型之旅
人工智能
一只昀1 小时前
【产品经理学习案例——AI翻译棒出海业务】
人工智能·ai·产品经理
蓝染k9z2 小时前
在Ubuntu上使用Docker部署DeepSeek
linux·人工智能·ubuntu·docker·deepseek+
小李学AI2 小时前
基于YOLO11的遥感影像山体滑坡检测系统
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·yolo11
AI浩3 小时前
【Block总结】CPCA,通道优先卷积注意力|即插即用
人工智能·深度学习·目标检测·计算机视觉
IT果果日记4 小时前
Ollama+OpenWebUI部署本地大模型
人工智能·ai编程·ollama·openwebui
说私域4 小时前
基于开源2 + 1链动模式AI智能名片S2B2C商城小程序的内容创作与传播效能探究
人工智能·小程序·开源
想拿高薪的韭菜5 小时前
人工智能第2章-知识点与学习笔记
人工智能·笔记·学习