【神经网络结构可视化】使用 Visualkeras 可视化 Keras / TensorFlow 神经网络结构

文章目录


Visualkeras介绍

Visualkeras是一个Python包,用于帮助可视化Keras(独立或包含在tensorflow中)神经网络架构。它允许简单的造型来满足大多数需求。该模块支持分层风格的架构生成,这对CNN(卷积神经网络)非常有用。


下载安装

Visualkeras源代码链接:https://github.com/paulgavrikov/visualkeras

使用清华源安装Visualkeras

python 复制代码
pip install visualkeras -i https://pypi.tuna.tsinghua.edu.cn/simple

代码示例

使用CNN经典网络VGG16作为示例,可视化神经网络结构。

1、导入必要的库

python 复制代码
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont

2、创建VGG16神经网络模型

python 复制代码
# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))

model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())

model.add(Flatten())

model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))

3、可视化神经网络结构

python 复制代码
# Now visualize the model!

color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'

font = ImageFont.truetype("./Arial.ttf", 32)

visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],
                         legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',
                         type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',
                         color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',
                         draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',
                         scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

4、完整代码

python 复制代码
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D, InputLayer, ZeroPadding2D
from collections import defaultdict
import visualkeras
from PIL import ImageFont

# create VGG16
image_size = 224
model = Sequential()
model.add(InputLayer(input_shape=(image_size, image_size, 3)))

model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(64, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(128, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(256, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(visualkeras.SpacingDummyLayer())

model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(ZeroPadding2D((1, 1)))
model.add(Conv2D(512, activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D())
model.add(visualkeras.SpacingDummyLayer())

model.add(Flatten())

model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))

# Now visualize the model!

color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'

font = ImageFont.truetype("./Arial.ttf", 32)

visualkeras.layered_view(model, to_file='./figures/vgg16.png', type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_legend.png', type_ignore=[visualkeras.SpacingDummyLayer],
                         legend=True, font=font)
visualkeras.layered_view(model, to_file='./figures/vgg16_spacing_layers.png', spacing=0)
visualkeras.layered_view(model, to_file='./figures/vgg16_type_ignore.png',
                         type_ignore=[ZeroPadding2D, Dropout, Flatten, visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_color_map.png',
                         color_map=color_map, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_flat.png',
                         draw_volume=False, type_ignore=[visualkeras.SpacingDummyLayer])
visualkeras.layered_view(model, to_file='./figures/vgg16_scaling.png',
                         scale_xy=1, scale_z=1, max_z=1000, type_ignore=[visualkeras.SpacingDummyLayer])

5、使用教程

  • 创建一个项目文件夹(例如:Project)
  • 在创建的项目文件夹Project 中新建一个文件夹(文件夹名为 figures )
  • 通过链接(https://ultralytics.com/assets/Arial.ttf)下载 Arial.ttf 字体文件
  • 将下载的 Arial.ttf 字体文件 放在 项目文件夹Project 下
  • 在 项目文件夹Project 下新建一个py文件(如:examples.py
  • 将上述的完整代码复制到 examples.py
  • 运行examples.py
  • 在 figures文件夹中查看生成的可视化图
  • vgg16.png
  • vgg16_legend.png

可视化自己创建的神经网络结构

1、导入要的库

python 复制代码
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras

2、创建自己的神经网络模型

将以下代码替换为自己的Keras / TensorFlow 神经网络结构。

python 复制代码
model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))

3、可视化神经网络结构图

显示层风格图

python 复制代码
visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图

显示带有标签的层风格图

python 复制代码
from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)

visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图

4、完整代码

python 复制代码
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models,layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
from tensorflow.keras.callbacks import Callback, ModelCheckpoint
import visualkeras

# 可以将下面这部分创建模型的代码更换你自己的神经网络结构
model = models.Sequential()
# 第一层卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 48, 1)))  # 假设输入图像大小为48x48,1为灰度图
model.add(layers.MaxPooling2D((2, 2)))
# 第二层卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层
model.add(layers.Flatten())
# 全连接层
model.add(layers.Dense(64, activation='relu'))
# 输出层,假设分类任务有7个类别
model.add(layers.Dense(7, activation='softmax'))

visualkeras.layered_view(model).show() # 只显示图
# visualkeras.layered_view(model, to_file='output.png').show() # 保存和显示图

from PIL import ImageFont
font = ImageFont.truetype("./Arial.ttf", 32)

visualkeras.layered_view(model, legend=True, font=font).show() # 只显示图
# visualkeras.layered_view(model, to_file='output_legend.png', legend=True, font=font).show()  # 保存和显示图
相关推荐
Jay Kay15 小时前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
IAM四十二11 天前
Google 端侧 AI 框架 LiteRT 初探
android·深度学习·tensorflow
Brilliant Nemo12 天前
web布局02
前端·人工智能·tensorflow
聚客AI12 天前
GPU利用率90%的秘诀:PyTorch/TensorFlow高阶优化技巧
人工智能·pytorch·tensorflow
小张在编程13 天前
Python 深度学习基础:TensorFlow 入门——从张量到神经网络的实战指南
python·深度学习·tensorflow
boooo_hhh15 天前
第32周———Tensorflow|LSTM-火灾温度预测
人工智能·tensorflow·lstm
微信公众号:AI创造财富15 天前
Pyenv 跟 Conda 还有 Poetry 有什么区别?各有什么不同?
人工智能·python·conda·tensorflow
LXJSWD16 天前
tensorflow GPU训练loss与val loss值差距过大问题
人工智能·python·tensorflow
lishaoan7716 天前
Tensorflow基础之矩阵计算回顾及Tensorflow基础计算一
矩阵·tensorflow·变量·tensor·张量·variables
雪兔♛16 天前
flex布局 项目属性
人工智能·python·tensorflow