opencl色域变换,处理传递显存数据

在使用ffmpeg解码后的多路解码数据非常慢,还要给AI做行的加速方式是在显存处理数据,在视频拼接融合产品的产品与架构设计中,提出了比较可靠的方式是使用cuda,那么没有cuda的显卡如何处理呢

,比较好的方式是使用opencl来提高数据传输效率

核函数

在OpenCL中,将NV12格式转换为BGR格式通常涉及到对UV分量的处理,nv12 是使用ffmpeg等解码后的直接数据,注意linesize对齐

c 复制代码
#define GROUP_SIZE 16
 
// OpenCL kernel to convert NV12 to BGR
__kernel void nv12_to_bgr(__global const uchar *nv12,
                          __global uchar *bgr,
                          int width, int height) {
    int x = get_global_id(0);
    int y = get_global_id(1);
 
    // Make sure we are not out of bounds
    if (x < width && y < height) {
        // Calculate Y, U, and V indices
        int yIndex = y * width + x;
        int uvIndex = width * height + (y / 2) * (width) + (x & ~1); // Use '& ~1' to get even X indices for U/V
 
        // Load Y, U, and V values
        uchar yValue = nv12[yIndex];
        uchar uValue = nv12[uvIndex];
        uchar vValue = nv12[uvIndex + 1];
 
        // Convert YUV to RGB
        uchar bValue = (uchar)((yValue                  + 1.732446 * (uValue - 128));
        uchar gValue = (uchar)((yValue - 0.344134 * (vValue - 128) - 0.714136 * (uValue - 128));
        uchar rValue = (uchar)((yValue + 1.402225 * (vValue - 128));
 
        // Pack BGR values
        uchar bgrValue = (bValue << 2) | (gValue >> 4) | (rValue << 6);
 
        // Store BGR value
        bgr[yIndex] = bgrValue;
    }
}

cpu上继续

注意错误处理

c 复制代码
// 设置OpenCL内核参数
size_t global_work_size[2] = {width, height};
cl_kernel nv12_to_bgr_kernel = ...; // 获取你编译的内核
 
// 设置内核参数
clSetKernelArg(nv12_to_bgr_kernel, 0, sizeof(cl_mem), &nv12_buffer);
clSetKernelArg(nv12_to_bgr_kernel, 1, sizeof(cl_mem), &bgr_buffer);
clSetKernelArg(nv12_to_bgr_kernel, 2, sizeof(int), &width);
clSetKernelArg(nv12_to_bgr_kernel, 3, sizeof(int), &height);
 
// 执行内核
cl_event event;
clEnqueueNDRangeKernel(command_queue, nv12_to_bgr_kernel, 2, NULL, global_work_size, NULL, 0, NULL, &event);
 
// 等待命令执行完毕
clWaitForEvents(1, &event);

针对arm,非显存

用128位的寄存器进行处理。

vld1_u8 从内存中读取88位数据到寄存器
vld1q_u8 从内存中读取16
8位数据到寄存器

vld3q_u8 从内存中读取3个168位数据到寄存器中
vst3q_u8 将三个128位寄存器的数据写到内存中
vld4_u8 从内存中读取4个8
8位数据到寄存器中

vmull_u8 执行两个8*8位无符号整数的乘法操作

vshrn_n_u16 16位无符号整数右移指定的位数

vst1_u8 将128位寄存器中的8位无符号整数元素存储到内存中

vshrq_n_s16 16位整数右移指定的位数

举例

c 复制代码
void bgr_to_rgb(uint8_t *bgr, uint8_t *rgb, int width, int height)
{
    // Ensure BGR and BGR buffers are 16-byte aligned for NEON
    uint8_t *bgr_aligned = (uint8_t *)(((uintptr_t)bgr + 15) & ~15);
    uint8_t *rgb_aligned = (uint8_t *)(((uintptr_t)rgb + 15) & ~15);

    for (int q = 0; q < height * width / 16; q++)
    {
        // Calculate the index for the current pixel
        int index = q * 16 * 3;

        // Load 16 BGR pixels into three vectors.
        uint8x16x3_t bgr_vector = vld3q_u8(bgr_aligned + index);

        // Shuffle the bytes to convert from BGR to BGR.
        uint8x16_t b = bgr_vector.val[2]; // Blue
        uint8x16_t g = bgr_vector.val[1]; // Green
        uint8x16_t r = bgr_vector.val[0]; // Red

        // Combine the shuffled bytes into a single vector.
        uint8x16x3_t rgb_vector = {b, g, r};

        // Store the result.
        vst3q_u8(rgb_aligned + index, rgb_vector);
    }
}

使用gstreamer

使用gstremaer pipeline技术写好插件,直接操作显存

相关推荐
赖small强15 小时前
【Linux C/C++开发】第16章:多线程编程基础
linux·c语言·c++·多线程编程·进程和线程的本质区别
AA陈超15 小时前
以 Lyra 的架构为基础,创建一个名为 “Aura“ 的英雄并实现发射火球技能
c++·笔记·学习·ue5·lyra
xlq2232216 小时前
16.17.list(上)
c++·list
cpp_250117 小时前
P1765 手机
数据结构·c++·算法·题解·洛谷
未到结局,焉知生死17 小时前
PAT每日三题11-20
c++·算法
就是ping不通的蛋黄派18 小时前
数据结构与算法—线性表(C++描述)
数据结构·c++
杜子不疼.19 小时前
【C++】深入解析AVL树:平衡搜索树的核心概念与实现
android·c++·算法
永远不打烊19 小时前
c++11 之 统一初始化(Uniform Initalization)
c++·程序员
艾莉丝努力练剑19 小时前
【C++:哈希表封装】用哈希表封装unordered_map和unordered_set
java·c++·stl·哈希算法·散列表·平衡二叉树·哈希
你好,赵志伟20 小时前
Reactor反应堆
网络·c++