Langchain-Chatchat之pdf转markdown格式

文章目录

背景

在使用Langchain-Chatchat做RAG的时候,发现导入的pdf文件中的表格关系无法保存,导致LLM的回答不符合预期。例如我想问的内容在表格中,但LLM的回答并不是对表格的总结。

那么想要解决这个问题,就需要找到一种合适的文本格式来保留表格间的关系,然后修改Langchain-Chatchat的文本加载源码,使pdf文本转换成目标的文本格式,也就是本篇的markdown格式。

开发环境

  • RAG框架: Langchain-Chatchat
  • 大模型: Qwen1.5-14B-Chat
  • 资源要求: GPU显存
    • 14B双精度约等于14*2,加上embeding模型,大约30G的显存
    • CPU>8核即可
  • Prompt: 使用Langchain-Chatchat为知识库配置的默认Prompt。

loader文本解析步骤

Langchain-Chatchat默认对pdf文件使用的loader是mypdfloader.py,解析文档的流程如下:

  1. 调用server/api.py中的/knowledge_base/upload_docs 上传文档
  2. 通过KnowledgeFile这个类来实现文档解析,文档分词等功能
  3. 调用mypdfloader.py加载pdf文件,使用pyMuPDF包的fitz解析pdf文档
  4. 获取pdf中的text内容
  5. 针对图片使用ocr模块进行解析,获取图片中的文本
  6. text和图片文本连接到一起,作为文档的内容
  7. 调用unstructured.partition.text import partition_text 进行文本段落划分
  8. 使用默认的ChineseRecursiveTextSplitter进行分词,存储到向量库

出问题的地方就在于加载pdf文件的部分,把表格作为普通的文本加载,自然就保存不了表格的关系了。

markdown格式的文本

Blog - Artifex
RAG分块策略的五个级别

为什么选择markdown格式

  1. markdown可以支持"基于文档的分块"
  2. 提取出markdown格式,支持保留表格的行,列关系
  3. 结构化的内容更有利于LLM大模型理解和上下文保存

在 LLM 和 RAG 环境中使用 Markdown 文本格式可确保更准确和相关的结果,因为它为 LLM 提供了更丰富的数据结构和更相关的数据块加载。

测试markdown格式提取表格

相比于text格式的分词来说,markdown格式的分词可以保留表格的数据和关系

,例如下面的表格。

原pdf表格
markdown格式的表格

可以看到表格关系都保留下来了。

测试markdown格式的知识库

运行项目

参考官方的开发环境搭建 即可。因为使用的是大模型是Qwen1.5-14B-Chat,因此需要更改模型配置文件的路径,读取Qwen1.5-14B-Chat。

markdown 复制代码
# model_config.py
MODEL_ROOT_PATH = "你的本地模型地址path"
LLM_MODELS = ["Qwen1.5-14B-Chat"]
MODEL_PATH = {
  "llm_model":{
    "Qwen1.5-14B-Chat": "modelPath/Qwen1.5-14B-Chat",
  }
}

# server_config.py
FSCHAT_MODEL_WORKERS = {
  # 给Qwen-14b不同的启动端口,不然会默认使用default
    "Qwen1.5-14B-Chat": {
        "host": DEFAULT_BIND_HOST,
        "port": 21012,
        "device": LLM_DEVICE,
        "infer_turbo": False,
        # model_worker多卡加载需要配置的参数
        "gpus": "0,1,2,3", # 使用的GPU,以str的格式指定,如"0,1",如失效请使用CUDA_VISIBLE_DEVICES="0,1"等形式指定
        "num_gpus": 4, # 使用GPU的数量
    },
}

修改文件加载器loader

  1. 使用pdf4llm读取文件: https://pymupdf.readthedocs.io/en/latest/rag.html
    1. 安装 https://github.com/pymupdf/RAG/
  2. 修改document_loaders/mypdfloader.py
markdown 复制代码
import pdf4llm
def pdf2markdown_text(filepath):
    doc = pdf4llm.to_markdown(filepath, pages=None)
    return doc

# pdf转markdown
from unstructured.partition.md import partition_md
text = pdf2markdown_text(self.file_path)
# 这里使用partition_md的分段
return partition_md(text=text, **self.unstructured_kwargs)
  1. 使用默认的ChineseRecursiveTextSplitter分词器
  2. web端页面新建知识库,导入pdf文件即可
  3. 测试表格问答效果
    1. 脚手架的搭设高度以及对应的安全等级
    2. pdf文档
    3. 大模型回答
    4. 可以看到保留了表格的关系,大模型做的总结是正确的。

其他问题

运行项目报错

raise OSError(errno.ENOSPC, "inotify watch limit reached")
OSError: [Errno 28] inotify watch limit reached

streamlit可能需要开启大量的inotify实例来监视文件系统的改动,因此可以手动增加max_user_watches的值来解决。

一般程序监视某个或某些目录的文件是否被创建、修改、删除等等就需要启动inotify实例,但是每一个inotify实例都需要消耗一定量的内存。

查看系统当前的max_user_watches
# 查看当前系统中的max_user_instances数量
cat /proc/sys/fs/inotify/max_user_instances
max_user_instances 控制着一个单一用户(或者用户ID,UID)可以创建的 inotify 实例的最大数量。

# 查看当前系统中的max_user_watches数量
cat /proc/sys/fs/inotify/max_user_watches
max_user_watches 控制着一个用户可以添加到所有 inotify 实例中的监视项(watches)的总数。

# 增大max_user_instances的值 (修改成10240还是启动不了,得修改成102400)
sudo sysctl -w fs.inotify.max_user_watches=102400
修改sysctl.conf配置
# 目前把这一行配置给加到/etc/sysctl.conf中去了,设置成102400
fs.inotify.max_user_watches=102400
# 执行一次sysctl.conf配置
sudo sysctl -p /etc/sysctl.conf
# 这样的好处是不需要重新启动系统即可应用更改,并且在每次系统启动时会自动将此值设置为 102400。

图片提取问题

经过测试,有的图片内容能提取出来,有的提取不出来 -- 建议还是加一个图片提取函数

  1. 图片中的逻辑关系会丢失,例如:
  2. 因为ppt排版中有文字和图片,会丢失一些逻辑关系,例如:文字1 图片1 ,在解析的时候会分别加载,失去了文字1 和图片1的逻辑关系
怎么提取图片内容
  1. 目前pdf4llm不支持图片的读取
  2. 可以看到在langchain中的使用,是文字提取+图片提取
    1. 参考:https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/parsers/pdf.py#L218
    2. _extract_images_from_page 函数
      1. 也是使用的OCR模块
    3. 不同的地方在于,langchain的pdfloader是text+img的方式。不是我们想要的markdown的方式,可以再添加一个提取图片的函数来完善markdown文件。

使用Milvus向量库报错

markdown 复制代码
AssertionError: A list of valid ids are required when auto_id is False.
或
milvus error: KeyError: 'pk'

参考:https://github.com/langchain-ai/langchain/issues/17172

原因是Langchain-Chatchat中milvus的默认配置是auto_id=False,也就是说需要自己提供主键。但是在代码中没有发现有添加主键的部分,因此导入到milvus会报错。

修复方法也比较简单,直接在初始化Milvus的时候设置auto_id=True即可,如下:

markdown 复制代码
    def _load_milvus(self):
        self.milvus = Milvus(embedding_function=EmbeddingsFunAdapter(self.embed_model),
         collection_name=self.kb_name,
         connection_args=kbs_config.get("milvus"),
         auto_id=True,
         index_params=kbs_config.get("milvus_kwargs")["index_params"],
         search_params=kbs_config.get("milvus_kwargs")["search_params"]
         )

end

相关推荐
一个处女座的程序猿17 小时前
LLMs之PDF:zeroX(一款PDF到Markdown 的视觉模型转换工具)的简介、安装和使用方法、案例应用之详细攻略
pdf·markdown·zerox
Dxy123931021618 小时前
python下载pdf
数据库·python·pdf
周亚鑫18 小时前
vue3 pdf base64转成文件流打开
前端·javascript·pdf
一名技术极客19 小时前
Vue2 doc、excel、pdf、ppt、txt、图片以及视频等在线预览
pdf·powerpoint·excel·文件在线预览
S. Dylan1 天前
Edge浏览器打开PDF无法显示电子签章
edge·pdf
一马平川的大草原1 天前
如何基于pdf2image实现pdf批量转换为图片
计算机视觉·pdf·文件拆分
m0_594526301 天前
Python批量合并多个PDF
java·python·pdf
hairenjing11231 天前
将图片添加到 PDF 的 5 种方法
pdf
✿゚卡笨卡1 天前
pdf 添加页眉页脚,获取前五页
java·pdf
blegn1 天前
PDF编辑工具Adobe Acrobat DC 2023安装教程(附安装包)
pdf·办公软件·office