【荐闻】空中目标检测综述

https://t.zsxq.com/tgUjbhttps://t.zsxq.com/tgUjb

这篇综述论文全面回顾了空中目标检测的最新进展,包括五个不平衡问题、相关方法、实际应用和性能评估。以下是对论文内容的详细描述:

1)引言:介绍了空中目标检测的概念,以及它相对于通用目标检测的挑战,如尺度不平衡、空间不平衡、目标不平衡、语义不平衡和类别不平衡。

2)空中目标检测的不平衡问题分类:详细定义了空中目标检测中的五个不平衡问题,即尺度不平衡、空间不平衡、目标不平衡、语义不平衡和类别不平衡,并给出了每个不平衡问题的具体表现形式。

3)空中目标检测的优化解决方案:将现有方法分为六大类:数据增强、多尺度特征融合、区域关注、多任务学习、模型轻量化和多方向预测,并全面分析了每类方法。

4)空中目标检测的应用:详细介绍了空中目标检测在城市场管理、工业检查、作物监测、安全监控、灾害救援和生态保护等六个场景中的应用。

5)数据集介绍、评估指标和性能评价:介绍了与空中目标检测相关的数据集,包括车辆检测数据集、行人检测数据集、工业检查数据集、船只检测数据集和多类别检测数据集。同时,简要介绍了与空中目标检测相关的评估指标,并在两个常用的数据集VisDrone-DET和DOTA上对一些主流方法进行了性能评估。

6)总结与展望:总结了空中目标检测的发展现状和面临的挑战,提出了未来的研究方向,包括针对空中图像特性的特定数据增强方法、更高效的尺度特征融合、从多模态数据中学习、鸟瞰视角感知、视觉推理和可信赖的检测模型等。

总体来说,这篇综述论文全面系统地介绍了空中目标检测的最新进展,分析了其中的不平衡问题,提出了优化解决方案,并探讨了其在实际应用中的潜力。论文内容丰富,结构清晰,对空中目标检测领域的研究者和工程师具有重要的参考价值。

相关推荐
果冻人工智能25 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工26 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz28 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤38 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭40 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~41 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇1 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow