【荐闻】空中目标检测综述

https://t.zsxq.com/tgUjbhttps://t.zsxq.com/tgUjb

这篇综述论文全面回顾了空中目标检测的最新进展,包括五个不平衡问题、相关方法、实际应用和性能评估。以下是对论文内容的详细描述:

1)引言:介绍了空中目标检测的概念,以及它相对于通用目标检测的挑战,如尺度不平衡、空间不平衡、目标不平衡、语义不平衡和类别不平衡。

2)空中目标检测的不平衡问题分类:详细定义了空中目标检测中的五个不平衡问题,即尺度不平衡、空间不平衡、目标不平衡、语义不平衡和类别不平衡,并给出了每个不平衡问题的具体表现形式。

3)空中目标检测的优化解决方案:将现有方法分为六大类:数据增强、多尺度特征融合、区域关注、多任务学习、模型轻量化和多方向预测,并全面分析了每类方法。

4)空中目标检测的应用:详细介绍了空中目标检测在城市场管理、工业检查、作物监测、安全监控、灾害救援和生态保护等六个场景中的应用。

5)数据集介绍、评估指标和性能评价:介绍了与空中目标检测相关的数据集,包括车辆检测数据集、行人检测数据集、工业检查数据集、船只检测数据集和多类别检测数据集。同时,简要介绍了与空中目标检测相关的评估指标,并在两个常用的数据集VisDrone-DET和DOTA上对一些主流方法进行了性能评估。

6)总结与展望:总结了空中目标检测的发展现状和面临的挑战,提出了未来的研究方向,包括针对空中图像特性的特定数据增强方法、更高效的尺度特征融合、从多模态数据中学习、鸟瞰视角感知、视觉推理和可信赖的检测模型等。

总体来说,这篇综述论文全面系统地介绍了空中目标检测的最新进展,分析了其中的不平衡问题,提出了优化解决方案,并探讨了其在实际应用中的潜力。论文内容丰富,结构清晰,对空中目标检测领域的研究者和工程师具有重要的参考价值。

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房7 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习