使用Python进行数据分析与可视化的简单示例

使用Python进行数据分析与可视化的简单示例。在这个示例中,我们将使用Pandas库进行数据分析,并使用Matplotlib库进行数据可视化。

首先,假设我们有一个包含销售数据的CSV文件(sales_data.csv),其中包含以下列:日期(Date)、销售额(Sales)和产品类别(Product_Category)。

CSV文件的内容可能如下:

csv 复制代码
Date,Sales,Product_Category
2023-01-01,1000,A
2023-01-02,1200,B
2023-01-03,900,A
2023-01-04,1100,C
...

接下来,我们将使用Python读取这个CSV文件,分析数据,并创建一个简单的条形图来可视化不同产品类别的销售额。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

# 读取CSV文件
df = pd.read_csv('sales_data.csv')

# 查看数据前几行
print(df.head())

# 对销售额进行分组并求和,以产品类别为分组依据
sales_by_category = df.groupby('Product_Category')['Sales'].sum().reset_index()

# 创建一个条形图,展示不同产品类别的销售额
plt.figure(figsize=(10, 6))  # 设置图形大小
plt.bar(sales_by_category['Product_Category'], sales_by_category['Sales'], color='skyblue')
plt.xlabel('Product Category')  # 设置x轴标签
plt.ylabel('Total Sales')  # 设置y轴标签
plt.title('Sales by Product Category')  # 设置图形标题
plt.grid(True)  # 显示网格线
plt.show()  # 显示图形

在这个示例中,我们首先使用Pandas的read_csv函数读取CSV文件,并将数据存储在DataFrame对象df中。然后,我们使用groupbysum函数对销售额进行分组求和,得到不同产品类别的总销售额。最后,我们使用Matplotlib的bar函数创建一个条形图,展示不同产品类别的销售额。通过设置图形的标题、轴标签和网格线等属性,我们可以使图形更加清晰易读。最后,使用show函数显示图形。

相关推荐
查理零世3 分钟前
【蓝桥杯集训·每日一题2025】 AcWing 6134. 哞叫时间II python
python·算法·蓝桥杯
紫雾凌寒12 分钟前
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
人工智能·python·神经网络·算法·机器学习·卷积神经网络
sun lover25 分钟前
conda简单命令
python·conda
服务端相声演员34 分钟前
Oracle JDK、Open JDK zulu下载地址
java·开发语言
Mike_188702783511 小时前
1688代采下单API接口使用指南:实现商品采集与自动化下单
前端·python·自动化
19岁开始学习1 小时前
Go学习-入门
开发语言·学习·golang
青铜念诗1 小时前
python脚本文件设置进程优先级(在.py文件中实现)
开发语言·python
一念春风1 小时前
C# 背景 透明 抗锯齿 (效果完美)
开发语言·c#
Igallta_8136221 小时前
【小游戏】C++控制台版本俄罗斯轮盘赌
c语言·开发语言·c++·windows·游戏·游戏程序
Dyan_csdn2 小时前
【Python项目】文本相似度计算系统
开发语言·python