LLama学习记录

学习前:

五大问题:

  1. 为什么SwiGLU激活函数能够提升模型性能?
  2. RoPE位置编码是什么?怎么用的?还有哪些位置编码方式?
  3. GQA(Grouped-Query Attention, GQA)分组查询注意力机制是什么?
  4. Pre-normalization前置 了层归一化,使用**RMSNorm**作为层归一化方法,这是什么意思?还有哪些归一化方法?LayerNorm?
  5. 将self-attention改进为使用KV-Cache的Grouped Query,怎么实现的?原理是什么?

Embedding

Embedding的过程word -> token_id -> embedding_vector,其中第一步转化 使用tokenizer的词表 进行,第二步转化 使用 learnable 的 Embedding layer

这里的第二步,不是很明白怎么实现的,需要再细化验证

RMS Norm

对比Batch Norm 和 Layer Norm:都是减去均值Mean,除以方差Var(还加有一个极小值),最终将归一化为正态分布N(0,1)。只不过两者是在不同的维度(batch还是feature)求均值和方差,(其中,减均值:re-centering 将均值mean变换为0,除方差:re-scaling将方差varance变换为1)。

参考知乎的norm几则

RoPE(Rotary Positional Encodding)

绝对Positional Encodding的使用过程:word -> token_id -> embedding_vector + position_encodding -> Encoder_Input,其中第一步转化使用tokenizer的词表进行,第二步转化使用 learnable 的 Embedding layer。将得到的embedding_vector 和 position_encodding 进行element-wise的相加,然后才做为input送入LLM的encoder。

理解LLM位置编码:RoPE

相关推荐
南宫生4 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__4 小时前
Web APIs学习 (操作DOM BOM)
学习
数据的世界016 小时前
.NET开发人员学习书籍推荐
学习·.net
四口鲸鱼爱吃盐6 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习
ibrahim7 小时前
Llama 3.2 900亿参数视觉多模态大模型本地部署及案例展示
ai·大模型·llama·提示词
OopspoO9 小时前
qcow2镜像大小压缩
学习·性能优化
A懿轩A9 小时前
C/C++ 数据结构与算法【栈和队列】 栈+队列详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·栈和队列
居居飒9 小时前
Android学习(四)-Kotlin编程语言-for循环
android·学习·kotlin
kkflash310 小时前
提升专业素养的实用指南
学习·职场和发展
1 9 J10 小时前
数据结构 C/C++(实验五:图)
c语言·数据结构·c++·学习·算法