LLama学习记录

学习前:

五大问题:

  1. 为什么SwiGLU激活函数能够提升模型性能?
  2. RoPE位置编码是什么?怎么用的?还有哪些位置编码方式?
  3. GQA(Grouped-Query Attention, GQA)分组查询注意力机制是什么?
  4. Pre-normalization前置 了层归一化,使用**RMSNorm**作为层归一化方法,这是什么意思?还有哪些归一化方法?LayerNorm?
  5. 将self-attention改进为使用KV-Cache的Grouped Query,怎么实现的?原理是什么?

Embedding

Embedding的过程word -> token_id -> embedding_vector,其中第一步转化 使用tokenizer的词表 进行,第二步转化 使用 learnable 的 Embedding layer

这里的第二步,不是很明白怎么实现的,需要再细化验证

RMS Norm

对比Batch Norm 和 Layer Norm:都是减去均值Mean,除以方差Var(还加有一个极小值),最终将归一化为正态分布N(0,1)。只不过两者是在不同的维度(batch还是feature)求均值和方差,(其中,减均值:re-centering 将均值mean变换为0,除方差:re-scaling将方差varance变换为1)。

参考知乎的norm几则

RoPE(Rotary Positional Encodding)

绝对Positional Encodding的使用过程:word -> token_id -> embedding_vector + position_encodding -> Encoder_Input,其中第一步转化使用tokenizer的词表进行,第二步转化使用 learnable 的 Embedding layer。将得到的embedding_vector 和 position_encodding 进行element-wise的相加,然后才做为input送入LLM的encoder。

理解LLM位置编码:RoPE

相关推荐
武昌库里写JAVA11 分钟前
JAVA面试汇总(四)JVM(一)
java·vue.js·spring boot·sql·学习
杜子不疼.30 分钟前
《Python学习之字典(一):基础操作与核心用法》
开发语言·python·学习
小幽余生不加糖1 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频
..过云雨2 小时前
01.【数据结构-C语言】数据结构概念&算法效率(时间复杂度和空间复杂度)
c语言·数据结构·笔记·学习
myzzb2 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
非凡ghost5 小时前
AMS PhotoMaster:全方位提升你的照片编辑体验
windows·学习·信息可视化·软件需求
云间月13147 小时前
飞算JavaAI智慧教育场景实践:从个性化学习到教学管理的全链路技术革新
学习·飞算javaai挑战赛
weixin_456904278 小时前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
Python私教9 小时前
从“Hello World”到“高并发中间件”:Go 语言 2025 系统学习路线图
学习·中间件·golang