lda模型:官方处理方式和自己处理数据对比

自己处理数据,然后分批训练,第一步先对比自己处理的方式和官方是否一致。

官方的代码

python 复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel

# 示例数据
documents = [
    "Human machine interface for lab abc computer applications",
    "A survey of user opinion of computer system response time",
    "The EPS user interface management system",
    "System and human system engineering testing of EPS",
    "Relation of user perceived response time to error measurement",
    "The generation of random binary unordered trees",
    "The intersection graph of paths in trees",
    "Graph minors IV Widths of trees and well quasi ordering",
    "Graph minors A survey"
]

# 预处理数据
texts = [[word for word in document.lower().split()] for document in documents]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]


# 训练 LDA 模型
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15, random_state=2024)


# 打印每个主题的关键词
for idx, topic in lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_processed = [word for word in new_doc.lower().split()]
new_doc_bow = dictionary.doc2bow(new_doc_processed)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
Topic: 0
Words: 0.078*"graph" + 0.078*"trees" + 0.078*"the" + 0.078*"of" + 0.078*"in" + 0.078*"intersection" + 0.078*"paths" + 0.013*"minors" + 0.013*"interface" + 0.013*"survey"

Topic: 1
Words: 0.062*"of" + 0.034*"measurement" + 0.034*"relation" + 0.034*"to" + 0.034*"error" + 0.034*"perceived" + 0.034*"lab" + 0.034*"applications" + 0.034*"for" + 0.034*"machine"

Topic: 2
Words: 0.062*"minors" + 0.062*"trees" + 0.062*"the" + 0.062*"binary" + 0.062*"random" + 0.062*"generation" + 0.062*"unordered" + 0.062*"a" + 0.062*"survey" + 0.062*"graph"

Topic: 3
Words: 0.134*"system" + 0.073*"human" + 0.073*"eps" + 0.073*"and" + 0.073*"of" + 0.073*"engineering" + 0.073*"testing" + 0.012*"time" + 0.012*"user" + 0.012*"response"

Topic: 4
Words: 0.090*"of" + 0.090*"user" + 0.090*"system" + 0.049*"computer" + 0.049*"response" + 0.049*"time" + 0.049*"survey" + 0.049*"a" + 0.049*"interface" + 0.049*"management"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.066698), (1, 0.7288686), (2, 0.06669144), (3, 0.06943816), (4, 0.068303764)]
python 复制代码
print(dictionary.token2id)

'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
'''


print(corpus)

'''
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''

自己处理方式

python 复制代码
def get_dictionary(input_data):
    output_dict = {}
    count = 0
    
    for l in input_data:
        l_list = l.strip().lower().split(" ")
        sorted_l_list = sorted(l_list)
        for k in sorted_l_list:
            if k not in output_dict:
                output_dict[k] = count
                count += 1
                
    return output_dict

my_dict = get_dictionary(documents)
print(my_dict)



def get_corpus(input_dict, input_data):
    output_list = []
    for l in input_data:
        tmp_dict = {}
        l_list = l.strip().lower().split(" ")
        for k in l_list:
            if k not in tmp_dict:
                tmp_dict[k] = 0
            tmp_dict[k] += 1
            
        tmp_list = []
        for k, v in tmp_dict.items():
            if k in input_dict.keys():
                tmp_list.append((input_dict[k], v))
            else:
                continue
        output_list.append(sorted(tmp_list))
        
    return output_list


my_corpus = get_corpus(my_dict, documents)
print(my_corpus)


def get_predict_corpus(input_dict, input_data):

    tmp_dict = {}
    l_list = input_data.strip().lower().split(" ")
    for k in l_list:
        if k not in tmp_dict:
            tmp_dict[k] = 0
        tmp_dict[k] += 1

    tmp_list = []
    for k, v in tmp_dict.items():
        if k in input_dict.keys():
            tmp_list.append((input_dict[k], v))
        else:
            continue

    return sorted(tmp_list)


'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''
python 复制代码
my_dict == dictionary.token2id

'''
True
'''

my_corpus == corpus

'''
True
'''
python 复制代码
# 训练 LDA 模型
my_lda_model = LdaModel(my_corpus, num_topics=5, passes=15, random_state=2024)
print(my_lda_model)


# 打印每个主题的关键词
for idx, topic in my_lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_bow = get_predict_corpus(my_dict, new_doc)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
LdaModel<num_terms=42, num_topics=5, decay=0.5, chunksize=2000>
Topic: 0
Words: 0.078*"32" + 0.078*"30" + 0.078*"18" + 0.078*"9" + 0.078*"33" + 0.078*"34" + 0.078*"35" + 0.013*"37" + 0.013*"5" + 0.013*"12"

Topic: 1
Words: 0.062*"9" + 0.034*"23" + 0.034*"25" + 0.034*"26" + 0.034*"22" + 0.034*"24" + 0.034*"6" + 0.034*"1" + 0.034*"3" + 0.034*"7"

Topic: 2
Words: 0.062*"37" + 0.062*"30" + 0.062*"18" + 0.062*"27" + 0.062*"29" + 0.062*"28" + 0.062*"31" + 0.062*"8" + 0.062*"12" + 0.062*"32"

Topic: 3
Words: 0.134*"13" + 0.073*"4" + 0.073*"16" + 0.073*"19" + 0.073*"9" + 0.073*"20" + 0.073*"21" + 0.012*"14" + 0.012*"15" + 0.012*"11"

Topic: 4
Words: 0.090*"9" + 0.090*"15" + 0.090*"13" + 0.049*"2" + 0.049*"11" + 0.049*"14" + 0.049*"12" + 0.049*"8" + 0.049*"5" + 0.049*"17"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.06669798), (1, 0.72894156), (2, 0.06669143), (3, 0.06936743), (4, 0.06830162)]
相关推荐
算法小白(真小白)2 小时前
低代码软件搭建自学第二天——构建拖拽功能
python·低代码·pyqt
唐小旭2 小时前
服务器建立-错误:pyenv环境建立后python版本不对
运维·服务器·python
007php0072 小时前
Go语言zero项目部署后启动失败问题分析与解决
java·服务器·网络·python·golang·php·ai编程
Chinese Red Guest3 小时前
python
开发语言·python·pygame
骑个小蜗牛3 小时前
Python 标准库:string——字符串操作
python
黄公子学安全5 小时前
Java的基础概念(一)
java·开发语言·python
程序员一诺6 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.6 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
Jiude7 小时前
算法题题解记录——双变量问题的 “枚举右,维护左”
python·算法·面试