lda模型:官方处理方式和自己处理数据对比

自己处理数据,然后分批训练,第一步先对比自己处理的方式和官方是否一致。

官方的代码

python 复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel

# 示例数据
documents = [
    "Human machine interface for lab abc computer applications",
    "A survey of user opinion of computer system response time",
    "The EPS user interface management system",
    "System and human system engineering testing of EPS",
    "Relation of user perceived response time to error measurement",
    "The generation of random binary unordered trees",
    "The intersection graph of paths in trees",
    "Graph minors IV Widths of trees and well quasi ordering",
    "Graph minors A survey"
]

# 预处理数据
texts = [[word for word in document.lower().split()] for document in documents]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]


# 训练 LDA 模型
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15, random_state=2024)


# 打印每个主题的关键词
for idx, topic in lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_processed = [word for word in new_doc.lower().split()]
new_doc_bow = dictionary.doc2bow(new_doc_processed)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
Topic: 0
Words: 0.078*"graph" + 0.078*"trees" + 0.078*"the" + 0.078*"of" + 0.078*"in" + 0.078*"intersection" + 0.078*"paths" + 0.013*"minors" + 0.013*"interface" + 0.013*"survey"

Topic: 1
Words: 0.062*"of" + 0.034*"measurement" + 0.034*"relation" + 0.034*"to" + 0.034*"error" + 0.034*"perceived" + 0.034*"lab" + 0.034*"applications" + 0.034*"for" + 0.034*"machine"

Topic: 2
Words: 0.062*"minors" + 0.062*"trees" + 0.062*"the" + 0.062*"binary" + 0.062*"random" + 0.062*"generation" + 0.062*"unordered" + 0.062*"a" + 0.062*"survey" + 0.062*"graph"

Topic: 3
Words: 0.134*"system" + 0.073*"human" + 0.073*"eps" + 0.073*"and" + 0.073*"of" + 0.073*"engineering" + 0.073*"testing" + 0.012*"time" + 0.012*"user" + 0.012*"response"

Topic: 4
Words: 0.090*"of" + 0.090*"user" + 0.090*"system" + 0.049*"computer" + 0.049*"response" + 0.049*"time" + 0.049*"survey" + 0.049*"a" + 0.049*"interface" + 0.049*"management"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.066698), (1, 0.7288686), (2, 0.06669144), (3, 0.06943816), (4, 0.068303764)]
python 复制代码
print(dictionary.token2id)

'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
'''


print(corpus)

'''
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''

自己处理方式

python 复制代码
def get_dictionary(input_data):
    output_dict = {}
    count = 0
    
    for l in input_data:
        l_list = l.strip().lower().split(" ")
        sorted_l_list = sorted(l_list)
        for k in sorted_l_list:
            if k not in output_dict:
                output_dict[k] = count
                count += 1
                
    return output_dict

my_dict = get_dictionary(documents)
print(my_dict)



def get_corpus(input_dict, input_data):
    output_list = []
    for l in input_data:
        tmp_dict = {}
        l_list = l.strip().lower().split(" ")
        for k in l_list:
            if k not in tmp_dict:
                tmp_dict[k] = 0
            tmp_dict[k] += 1
            
        tmp_list = []
        for k, v in tmp_dict.items():
            if k in input_dict.keys():
                tmp_list.append((input_dict[k], v))
            else:
                continue
        output_list.append(sorted(tmp_list))
        
    return output_list


my_corpus = get_corpus(my_dict, documents)
print(my_corpus)


def get_predict_corpus(input_dict, input_data):

    tmp_dict = {}
    l_list = input_data.strip().lower().split(" ")
    for k in l_list:
        if k not in tmp_dict:
            tmp_dict[k] = 0
        tmp_dict[k] += 1

    tmp_list = []
    for k, v in tmp_dict.items():
        if k in input_dict.keys():
            tmp_list.append((input_dict[k], v))
        else:
            continue

    return sorted(tmp_list)


'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''
python 复制代码
my_dict == dictionary.token2id

'''
True
'''

my_corpus == corpus

'''
True
'''
python 复制代码
# 训练 LDA 模型
my_lda_model = LdaModel(my_corpus, num_topics=5, passes=15, random_state=2024)
print(my_lda_model)


# 打印每个主题的关键词
for idx, topic in my_lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_bow = get_predict_corpus(my_dict, new_doc)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
LdaModel<num_terms=42, num_topics=5, decay=0.5, chunksize=2000>
Topic: 0
Words: 0.078*"32" + 0.078*"30" + 0.078*"18" + 0.078*"9" + 0.078*"33" + 0.078*"34" + 0.078*"35" + 0.013*"37" + 0.013*"5" + 0.013*"12"

Topic: 1
Words: 0.062*"9" + 0.034*"23" + 0.034*"25" + 0.034*"26" + 0.034*"22" + 0.034*"24" + 0.034*"6" + 0.034*"1" + 0.034*"3" + 0.034*"7"

Topic: 2
Words: 0.062*"37" + 0.062*"30" + 0.062*"18" + 0.062*"27" + 0.062*"29" + 0.062*"28" + 0.062*"31" + 0.062*"8" + 0.062*"12" + 0.062*"32"

Topic: 3
Words: 0.134*"13" + 0.073*"4" + 0.073*"16" + 0.073*"19" + 0.073*"9" + 0.073*"20" + 0.073*"21" + 0.012*"14" + 0.012*"15" + 0.012*"11"

Topic: 4
Words: 0.090*"9" + 0.090*"15" + 0.090*"13" + 0.049*"2" + 0.049*"11" + 0.049*"14" + 0.049*"12" + 0.049*"8" + 0.049*"5" + 0.049*"17"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.06669798), (1, 0.72894156), (2, 0.06669143), (3, 0.06936743), (4, 0.06830162)]
相关推荐
aiweker2 小时前
Selenium 使用指南:从入门到精通
python·selenium·测试工具
SteveKenny3 小时前
Python 梯度下降法(六):Nadam Optimize
开发语言·python
dreadp5 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
Tester_孙大壮5 小时前
第32章 测试驱动开发(TDD)的原理、实践、关联与争议(Python 版)
驱动开发·python·tdd
小王子10248 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
Mason Lin10 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客10 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
RZer12 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos
CM莫问13 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
查理零世13 小时前
【算法】回溯算法专题① ——子集型回溯 python
python·算法