lda模型:官方处理方式和自己处理数据对比

自己处理数据,然后分批训练,第一步先对比自己处理的方式和官方是否一致。

官方的代码

python 复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel

# 示例数据
documents = [
    "Human machine interface for lab abc computer applications",
    "A survey of user opinion of computer system response time",
    "The EPS user interface management system",
    "System and human system engineering testing of EPS",
    "Relation of user perceived response time to error measurement",
    "The generation of random binary unordered trees",
    "The intersection graph of paths in trees",
    "Graph minors IV Widths of trees and well quasi ordering",
    "Graph minors A survey"
]

# 预处理数据
texts = [[word for word in document.lower().split()] for document in documents]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]


# 训练 LDA 模型
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15, random_state=2024)


# 打印每个主题的关键词
for idx, topic in lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_processed = [word for word in new_doc.lower().split()]
new_doc_bow = dictionary.doc2bow(new_doc_processed)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
Topic: 0
Words: 0.078*"graph" + 0.078*"trees" + 0.078*"the" + 0.078*"of" + 0.078*"in" + 0.078*"intersection" + 0.078*"paths" + 0.013*"minors" + 0.013*"interface" + 0.013*"survey"

Topic: 1
Words: 0.062*"of" + 0.034*"measurement" + 0.034*"relation" + 0.034*"to" + 0.034*"error" + 0.034*"perceived" + 0.034*"lab" + 0.034*"applications" + 0.034*"for" + 0.034*"machine"

Topic: 2
Words: 0.062*"minors" + 0.062*"trees" + 0.062*"the" + 0.062*"binary" + 0.062*"random" + 0.062*"generation" + 0.062*"unordered" + 0.062*"a" + 0.062*"survey" + 0.062*"graph"

Topic: 3
Words: 0.134*"system" + 0.073*"human" + 0.073*"eps" + 0.073*"and" + 0.073*"of" + 0.073*"engineering" + 0.073*"testing" + 0.012*"time" + 0.012*"user" + 0.012*"response"

Topic: 4
Words: 0.090*"of" + 0.090*"user" + 0.090*"system" + 0.049*"computer" + 0.049*"response" + 0.049*"time" + 0.049*"survey" + 0.049*"a" + 0.049*"interface" + 0.049*"management"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.066698), (1, 0.7288686), (2, 0.06669144), (3, 0.06943816), (4, 0.068303764)]
python 复制代码
print(dictionary.token2id)

'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
'''


print(corpus)

'''
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''

自己处理方式

python 复制代码
def get_dictionary(input_data):
    output_dict = {}
    count = 0
    
    for l in input_data:
        l_list = l.strip().lower().split(" ")
        sorted_l_list = sorted(l_list)
        for k in sorted_l_list:
            if k not in output_dict:
                output_dict[k] = count
                count += 1
                
    return output_dict

my_dict = get_dictionary(documents)
print(my_dict)



def get_corpus(input_dict, input_data):
    output_list = []
    for l in input_data:
        tmp_dict = {}
        l_list = l.strip().lower().split(" ")
        for k in l_list:
            if k not in tmp_dict:
                tmp_dict[k] = 0
            tmp_dict[k] += 1
            
        tmp_list = []
        for k, v in tmp_dict.items():
            if k in input_dict.keys():
                tmp_list.append((input_dict[k], v))
            else:
                continue
        output_list.append(sorted(tmp_list))
        
    return output_list


my_corpus = get_corpus(my_dict, documents)
print(my_corpus)


def get_predict_corpus(input_dict, input_data):

    tmp_dict = {}
    l_list = input_data.strip().lower().split(" ")
    for k in l_list:
        if k not in tmp_dict:
            tmp_dict[k] = 0
        tmp_dict[k] += 1

    tmp_list = []
    for k, v in tmp_dict.items():
        if k in input_dict.keys():
            tmp_list.append((input_dict[k], v))
        else:
            continue

    return sorted(tmp_list)


'''
{'abc': 0, 'applications': 1, 'computer': 2, 'for': 3, 'human': 4, 'interface': 5, 'lab': 6, 'machine': 7, 'a': 8, 'of': 9, 'opinion': 10, 'response': 11, 'survey': 12, 'system': 13, 'time': 14, 'user': 15, 'eps': 16, 'management': 17, 'the': 18, 'and': 19, 'engineering': 20, 'testing': 21, 'error': 22, 'measurement': 23, 'perceived': 24, 'relation': 25, 'to': 26, 'binary': 27, 'generation': 28, 'random': 29, 'trees': 30, 'unordered': 31, 'graph': 32, 'in': 33, 'intersection': 34, 'paths': 35, 'iv': 36, 'minors': 37, 'ordering': 38, 'quasi': 39, 'well': 40, 'widths': 41}
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(2, 1), (8, 1), (9, 2), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(5, 1), (13, 1), (15, 1), (16, 1), (17, 1), (18, 1)], [(4, 1), (9, 1), (13, 2), (16, 1), (19, 1), (20, 1), (21, 1)], [(9, 1), (11, 1), (14, 1), (15, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)], [(9, 1), (18, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)], [(9, 1), (18, 1), (30, 1), (32, 1), (33, 1), (34, 1), (35, 1)], [(9, 1), (19, 1), (30, 1), (32, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1)], [(8, 1), (12, 1), (32, 1), (37, 1)]]
'''
python 复制代码
my_dict == dictionary.token2id

'''
True
'''

my_corpus == corpus

'''
True
'''
python 复制代码
# 训练 LDA 模型
my_lda_model = LdaModel(my_corpus, num_topics=5, passes=15, random_state=2024)
print(my_lda_model)


# 打印每个主题的关键词
for idx, topic in my_lda_model.print_topics(-1):
    print(f"Topic: {idx}\nWords: {topic}\n")


# 推断新文档的主题分布
new_doc = "Human computer interaction"
new_doc_bow = get_predict_corpus(my_dict, new_doc)
print(new_doc_bow)
print("New document topic distribution:", lda_model.get_document_topics(new_doc_bow))

结果

python 复制代码
LdaModel<num_terms=42, num_topics=5, decay=0.5, chunksize=2000>
Topic: 0
Words: 0.078*"32" + 0.078*"30" + 0.078*"18" + 0.078*"9" + 0.078*"33" + 0.078*"34" + 0.078*"35" + 0.013*"37" + 0.013*"5" + 0.013*"12"

Topic: 1
Words: 0.062*"9" + 0.034*"23" + 0.034*"25" + 0.034*"26" + 0.034*"22" + 0.034*"24" + 0.034*"6" + 0.034*"1" + 0.034*"3" + 0.034*"7"

Topic: 2
Words: 0.062*"37" + 0.062*"30" + 0.062*"18" + 0.062*"27" + 0.062*"29" + 0.062*"28" + 0.062*"31" + 0.062*"8" + 0.062*"12" + 0.062*"32"

Topic: 3
Words: 0.134*"13" + 0.073*"4" + 0.073*"16" + 0.073*"19" + 0.073*"9" + 0.073*"20" + 0.073*"21" + 0.012*"14" + 0.012*"15" + 0.012*"11"

Topic: 4
Words: 0.090*"9" + 0.090*"15" + 0.090*"13" + 0.049*"2" + 0.049*"11" + 0.049*"14" + 0.049*"12" + 0.049*"8" + 0.049*"5" + 0.049*"17"

[(2, 1), (4, 1)]
New document topic distribution: [(0, 0.06669798), (1, 0.72894156), (2, 0.06669143), (3, 0.06936743), (4, 0.06830162)]
相关推荐
AI Echoes1 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
程序之巅1 小时前
VS code 远程python代码debug
android·java·python
__如风__1 小时前
onlyoffice文档转换服务离线部署
python
今晚务必早点睡1 小时前
写一个Python接口:发送支付成功短信
开发语言·python
ada7_2 小时前
LeetCode(python)22.括号生成
开发语言·数据结构·python·算法·leetcode·职场和发展
2501_941871452 小时前
面向微服务链路追踪与全局上下文管理的互联网系统可观测性设计与多语言工程实践分享
大数据·数据库·python
luoluoal2 小时前
基于python的语音和背景音乐分离算法及系统(源码+文档)
python·mysql·django·毕业设计·源码
love530love2 小时前
EPGF 新手教程 12在 PyCharm(中文版 GUI)中创建 Poetry 项目环境,并把 Poetry 做成“项目自包含”(工具本地化为必做环节)
开发语言·ide·人工智能·windows·python·pycharm·epgf
cute_ming2 小时前
从 Node.js + TypeScript 无缝切换到 Python 的最佳实践
python·typescript·node.js
2501_941870562 小时前
从配置频繁变动到动态配置体系落地的互联网系统工程实践随笔与多语言语法思考
java·前端·python