什么是门控循环单元?

一、概念

门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖捕捉能力,同时提高了计算效率。GRU通过引入两个门(重置门和更新门)来控制信息的流动 。与LSTM不同,GRU没有单独的细胞状态,而是将隐藏状态直接作为信息传递的载体,因此结构更简单,计算效率更高。

二、核心算法

为时间步 t 的输入向量,为前一个时间步的隐藏状态向量,为当前时间步的隐藏状态向量,为当前时间步的重置门向量,为当前时间步的更新门向量,为当前时间步的候选隐藏状态向量,分别为各门的权重矩阵,为偏置向量,为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。

1、重置门

重置门控制前一个时间步的隐藏状态对当前时间步的影响。通过sigmoid激活函数,重置门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

2、更新门

更新门控制前一个时间步的隐藏状态和当前时间步的候选隐藏状态的混合比例。通过sigmoid激活函数,更新门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

3、候选隐藏状态

候选隐藏状态结合当前输入和前一个时间步的隐藏状态生成。重置门的输出与前一个隐藏状态相乘,表示保留的旧信息。然后与当前输入一起通过tanh激活函数生成候选隐藏状态。

4、隐藏状态更新

隐藏状态结合更新门的结果进行更新。更新门的输出与前一个隐藏状态相乘,表示保留的旧信息。更新门的补数与候选隐藏状态相乘,表示写入的新信息。两者相加得到当前时间步的隐藏状态。

三、python实现

python 复制代码
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
 
# 设置随机种子
torch.manual_seed(0)
np.random.seed(0)
 
# 生成正弦波数据
timesteps = 1000
sin_wave = np.array([np.sin(2 * np.pi * i / timesteps) for i in range(timesteps)])
 
# 创建数据集
def create_dataset(data, time_step=1):
    dataX, dataY = [], []
    for i in range(len(data) - time_step - 1):
        a = data[i:(i + time_step)]
        dataX.append(a)
        dataY.append(data[i + time_step])
    return np.array(dataX), np.array(dataY)
 
time_step = 10
X, y = create_dataset(sin_wave, time_step)
 
# 数据预处理
X = X.reshape(X.shape[0], time_step, 1)
y = y.reshape(-1, 1)
 
# 转换为Tensor
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32)
 
# 划分训练集和测试集
train_size = int(len(X) * 0.7)
test_size = len(X) - train_size
trainX, testX = X[:train_size], X[train_size:]
trainY, testY = y[:train_size], y[train_size:]
 
# 定义RNN模型
class GRUModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(GRUModel, self).__init__()
        self.hidden_size = hidden_size
        self.gru = nn.GRU(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
 
    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.hidden_size)
        out, _ = self.gru(x, h0)
        out = self.fc(out[:, -1, :])
        return out
 
input_size = 1
hidden_size = 50
output_size = 1
model = GRUModel(input_size, hidden_size, output_size)
 
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
 
# 训练模型
num_epochs = 50
for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(trainX)
    loss = criterion(outputs, trainY)
    loss.backward()
    optimizer.step()
 
    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
 
# 预测
model.eval()
train_predict = model(trainX)
test_predict = model(testX)
train_predict = train_predict.detach().numpy()
test_predict = test_predict.detach().numpy()
 
# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(sin_wave, label='Original Data')
plt.plot(np.arange(time_step, time_step + len(train_predict)), train_predict, label='Training Predict')
plt.plot(np.arange(time_step + len(train_predict), time_step + len(train_predict) + len(test_predict)), test_predict, label='Test Predict')
plt.legend()
plt.show()

四、总结

GRU的结构比LSTM更简单,只有两个门(重置门和更新门),没有单独的细胞状态。这使得GRU的计算复杂度较低,训练和推理速度更快。通过引入重置门和更新门,GRU也有效地解决了标准RNN在处理长序列时的梯度消失和梯度爆炸问题。然而,在需要更精细的门控制和信息流动的任务中,LSTM的性能可能优于GRU。因此在我们实际的建模过程中,可以根据数据特点选择合适的RNN系列模型,并没有哪个模型能在所有任务中都具有优势。

相关推荐
哥本哈士奇(aspnetx)4 小时前
Streamlit + LangChain 1.0 简单实现智能问答前后端
python·大模型
我一定会有钱5 小时前
斐波纳契数列、end关键字
python
亚马逊云开发者5 小时前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
fie88895 小时前
NSCT(非下采样轮廓波变换)的分解和重建程序
算法
全栈胖叔叔-瓜州5 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
小鸡吃米…6 小时前
Python 列表
开发语言·python
坚果派·白晓明6 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
晨晖26 小时前
单链表逆转,c语言
c语言·数据结构·算法
GISer_Jing6 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96956 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言