【缓存】框架层常见问题和对策

缓存是为了加快读写速度,再了解redis这类框架层的缓存应用之前,我们不妨先思考下操作系统层面的缓存解决方案,这样有助于我们更深的理解缓存,哪些是系统层面的,哪些是服务层面。

以下是一些常见的缓存问题及其解决方案,答案不止一个,需要大家发散性思考,针对业务应用场景去做取舍和抉择:

Q 缓存一致性问题:

在数据库更新数据时,同步更新缓存中的数据,以保证数据的一致性。

A 数据准时同步:通过消息队列(MQ)来异步更新缓存,确保数据最终一致性。也可以考虑强一致性方案,不过性能有影响。

Q 缓存穿透问题:

请求不存在的数据,导致请求直接打到数据库,可能引发性能问题。

A 解决方案:对请求参数进行校验,如用户鉴权、基础校验等。将不存在的数据也缓存,设置较短的过期时间。使用布隆过滤器来避免对数据库的查询。

Q 缓存击穿问题:

高访问量的key过期后,大量请求直接访问数据库,可能导致数据库压力过大。

A 解决方案:延长热点数据的过期时间或设置为永不过期。使用互斥锁,确保同一时间只有一个线程查询数据库并更新缓存。

Q 缓存雪崩问题:

大量key同时过期或缓存服务宕机,导致大量请求直接访问数据库。

A 解决方案:为key设置不同的过期时间,避免同时过期。使用高可用的分布式缓存集群,如Redis集群。

Q 双写不一致问题:

在更新操作时,可能会存在数据库和缓存中数据不一致的情况。

A 解决方案:

设置较短的缓存过期时间。使用消息队列辅助,先更新数据库,再删除缓存,如果删除失败则放入队列重试。使用读写队列串行化操作,但可能会降低吞吐量。

Q 缓存集中失效问题:

在高并发场景下,缓存集中失效可能导致大量请求直接访问数据库。

A 解决方案:

优化缓存策略,如使用分布式缓存。对缓存失效时间进行随机化处理。

Q 缓存粒度控制问题

全量缓存可能导致内存和带宽浪费,部分缓存可能影响性能。

A 解决方案:

根据业务需求合理选择缓存粒度。实施智能缓存策略,如基于访问频率动态调整缓存。

以上问题专有名词过多,如果记不住,可以用自己的话,进行归纳总结,再比对差异。

相关推荐
wenzhangli721 分钟前
告别手撸架构图!AI+Ooder实现漂亮架构+动态交互+全栈可视化实战指南
人工智能·架构·交互
容智信息2 小时前
Hyper Agent:企业级Agentic架构怎么实现?
人工智能·信息可视化·自然语言处理·架构·自动驾驶·智慧城市
czlczl200209252 小时前
从 SSO 登录到跨系统资源访问:OAuth2 全链路交互详解
java·spring boot·后端·spring·架构
虫小宝3 小时前
导购app佣金模式微服务拆分:领域驱动设计在返利系统中的实践
微服务·云原生·架构
龙亘川3 小时前
智算运维技术全景解析:挑战、架构与落地实践(2025 最新报告解读)
运维·架构·智算
攀登的牵牛花3 小时前
前端向架构突围系列 - 框架设计(三):用开闭原则拯救你的组件库
前端·架构
min1811234563 小时前
产品开发跨职能流程图在线生成工具
人工智能·microsoft·信息可视化·架构·机器人·流程图
无忧智库4 小时前
深度拆解:某大型医院“十五五”智慧医院建设方案,如何冲刺互联互通五级乙等?(附技术架构与实施路径)
java·数据库·架构
上海云盾第一敬业销售4 小时前
DDoS防护最佳实践:架构解析与选型指南
架构·ddos