【缓存】框架层常见问题和对策

缓存是为了加快读写速度,再了解redis这类框架层的缓存应用之前,我们不妨先思考下操作系统层面的缓存解决方案,这样有助于我们更深的理解缓存,哪些是系统层面的,哪些是服务层面。

以下是一些常见的缓存问题及其解决方案,答案不止一个,需要大家发散性思考,针对业务应用场景去做取舍和抉择:

Q 缓存一致性问题:

在数据库更新数据时,同步更新缓存中的数据,以保证数据的一致性。

A 数据准时同步:通过消息队列(MQ)来异步更新缓存,确保数据最终一致性。也可以考虑强一致性方案,不过性能有影响。

Q 缓存穿透问题:

请求不存在的数据,导致请求直接打到数据库,可能引发性能问题。

A 解决方案:对请求参数进行校验,如用户鉴权、基础校验等。将不存在的数据也缓存,设置较短的过期时间。使用布隆过滤器来避免对数据库的查询。

Q 缓存击穿问题:

高访问量的key过期后,大量请求直接访问数据库,可能导致数据库压力过大。

A 解决方案:延长热点数据的过期时间或设置为永不过期。使用互斥锁,确保同一时间只有一个线程查询数据库并更新缓存。

Q 缓存雪崩问题:

大量key同时过期或缓存服务宕机,导致大量请求直接访问数据库。

A 解决方案:为key设置不同的过期时间,避免同时过期。使用高可用的分布式缓存集群,如Redis集群。

Q 双写不一致问题:

在更新操作时,可能会存在数据库和缓存中数据不一致的情况。

A 解决方案:

设置较短的缓存过期时间。使用消息队列辅助,先更新数据库,再删除缓存,如果删除失败则放入队列重试。使用读写队列串行化操作,但可能会降低吞吐量。

Q 缓存集中失效问题:

在高并发场景下,缓存集中失效可能导致大量请求直接访问数据库。

A 解决方案:

优化缓存策略,如使用分布式缓存。对缓存失效时间进行随机化处理。

Q 缓存粒度控制问题

全量缓存可能导致内存和带宽浪费,部分缓存可能影响性能。

A 解决方案:

根据业务需求合理选择缓存粒度。实施智能缓存策略,如基于访问频率动态调整缓存。

以上问题专有名词过多,如果记不住,可以用自己的话,进行归纳总结,再比对差异。

相关推荐
马士兵教育1 小时前
程序员简历如何编写才能凸显出差异化,才能拿到更多面试机会?
开发语言·后端·面试·职场和发展·架构
SailingCoder2 小时前
【 从“打补丁“到“换思路“ 】一次企业级 AI Agent 的架构拐点
大数据·前端·人工智能·面试·架构·agent
OpenTiny社区2 小时前
Angular Module→Standalone 架构进化解析
前端·架构·angular.js
无心水3 小时前
5、微服务快速启航:基于Pig与BladeX构建高可用分布式系统实战
服务器·分布式·后端·spring·微服务·云原生·架构
rolt7 小时前
DDD岁月史书之二:分层架构是DDD提出的吗
架构·产品经理·uml·领域驱动设计
Sheffi667 小时前
AI智能体编程时代的技术架构:Claude Agent与OpenAI Codex在Xcode中的集成原理
人工智能·架构·xcode
麦聪聊数据7 小时前
基于 Web SQL 与 SQL2API 的数据治理架构实践
运维·sql·架构
yq1982043011568 小时前
静思书屋:一个高性能图书信息站的技术架构与优化实践
架构
yangyanping201088 小时前
系统监控Prometheus之监控原理和配置
分布式·架构·prometheus
新缸中之脑9 小时前
AI代理的两种沙盒架构
人工智能·架构