Keras实现SegNet

我真服了原来我之前用tf复现SegNet给复现错了

在网上试了多个版本代码,折腾了好久,现在终于复现对了,代码也跑通了

SegNet的架构比较老了,这几年都没人更新代码了,我这里算是提供一个最近能跑通的版本的代码吧

tf版本2.4.1

首先主要是构建两个类来实现池化索引,这里经过反复尝试我懵懵懂懂地解决了其它代码直接搬运过来导致的各种报错

python 复制代码
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Layer


class MaxPoolingWithArgmax2D(Layer):
    def __init__(self, pool_size=(2, 2), strides=(2, 2), padding='same', **kwargs):
        super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
        self.padding = padding
        self.pool_size = pool_size
        self.strides = strides

    def call(self, inputs, **kwargs):
        padding = self.padding
        pool_size = self.pool_size
        strides = self.strides
        if K.backend() == 'tensorflow':
            ksize = [1, pool_size[0], pool_size[1], 1]
            padding = padding.upper()
            strides = [1, strides[0], strides[1], 1]
            output, argmax = tf.nn.max_pool_with_argmax(inputs, ksize=ksize, strides=strides, padding=padding)
        else:
            errmsg = '{} backend is not supported for layer {}'.format(K.backend(), type(self).__name__)
            raise NotImplementedError(errmsg)
        argmax = K.cast(argmax, K.floatx())
        return [output, argmax]

    def compute_output_shape(self, input_shape):
        ratio = (1, 2, 2, 1)
        output_shape = [dim // ratio[idx] if dim is not None else None for idx, dim in enumerate(input_shape)]
        output_shape = tuple(output_shape)
        return [output_shape, output_shape]

    def compute_mask(self, inputs, mask=None):
        return 2 * [None]
    
    def get_config(self):
        config = super(MaxPoolingWithArgmax2D, self).get_config()
        config.update({
            "pool_size": self.pool_size,
            "strides": self.strides,
            "padding": self.padding,
        })
        return config


class MaxUnpooling2D(Layer):
    def __init__(self, size=(2, 2), **kwargs):
        super(MaxUnpooling2D, self).__init__(**kwargs)
        self.size = size

    def call(self, inputs, output_shape=None):
        updates, mask = inputs[0], inputs[1]
        with tf.compat.v1.variable_scope(self.name):
            mask = K.cast(mask, 'int32')
            input_shape = tf.shape(updates, out_type='int32')
            #  calculation new shape
            if output_shape is None:
                output_shape = (input_shape[0], input_shape[1] * self.size[0], input_shape[2] * self.size[1], input_shape[3])
                self.output_shape1 = output_shape

        # calculation indices for batch, height, width and feature maps
        one_like_mask = K.ones_like(mask, dtype='int32')
        batch_shape = K.concatenate([[input_shape[0]], [1], [1], [1]], axis=0)
        batch_range = K.reshape(tf.range(output_shape[0], dtype='int32'), shape=batch_shape)
        b = one_like_mask * batch_range
        y = mask // (output_shape[2] * output_shape[3])
        x = (mask // output_shape[3]) % output_shape[2]
        feature_range = tf.range(output_shape[3], dtype='int32')
        f = one_like_mask * feature_range

        # transpose indices & reshape update values to one dimension
        updates_size = tf.size(updates)
        indices = K.transpose(K.reshape(K.stack([b, y, x, f]), [4, updates_size]))
        values = K.reshape(updates, [updates_size])
        ret = tf.scatter_nd(indices, values, output_shape)
        input_shape = updates.shape
        out_shape = [-1,
                     input_shape[1] * self.size[0],
                     input_shape[2] * self.size[1],
                     input_shape[3]]
        return K.reshape(ret, out_shape)

    def compute_output_shape(self, input_shape):
        mask_shape = input_shape[1]
        return mask_shape[0], mask_shape[1] * self.size[0], mask_shape[2] * self.size[1], mask_shape[3]
    
    def get_config(self):
        config = super(MaxUnpooling2D, self).get_config()
        config.update({
            "size": self.size,
        })
        return config

另外SegNet网络主体部分,注意池化和反池化的时候filters数量要对得上

python 复制代码
def SegNet(fNum, dates, lossweights, filters=64):
    inputs = keras.layers.Input((fNum*dates, img_h, img_w))
    inputs0 = keras.layers.Lambda(reshapes2)(inputs) # 针对我数据的reshape

    # Encoder
    conv1 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(inputs0)
    conv1 = keras.layers.BatchNormalization()(conv1)
    conv1 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(conv1)
    conv1 = keras.layers.BatchNormalization()(conv1)
    pool1, idx1 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv1)

    conv2 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = keras.layers.BatchNormalization()(conv2)
    conv2 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(conv2)
    conv2 = keras.layers.BatchNormalization()(conv2)
    pool2, idx2 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv2)

    conv3 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = keras.layers.BatchNormalization()(conv3)
    conv3 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(conv3)
    conv3 = keras.layers.BatchNormalization()(conv3)
    pool3, idx3 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv3)

    conv4 = keras.layers.Conv2D(filters*8, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = keras.layers.BatchNormalization()(conv4)
    conv4 = keras.layers.Conv2D(filters*8, (3, 3), activation='relu', padding='same')(conv4)
    conv4 = keras.layers.BatchNormalization()(conv4)
    pool4, idx4 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv4)

    # Decoder
    up5 = MaxUnpooling2D((2,2))([pool4, idx4])
    conv5 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(up5)
    conv5 = keras.layers.BatchNormalization()(conv5)
    conv5 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(conv5)
    conv5 = keras.layers.BatchNormalization()(conv5)

    up6 = MaxUnpooling2D(size=(2, 2))([conv5, idx3])
    conv6 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(up6)
    conv6 = keras.layers.BatchNormalization()(conv6)
    conv6 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(conv6)
    conv6 = keras.layers.BatchNormalization()(conv6)

    up7 = MaxUnpooling2D(size=(2, 2))([conv6, idx2])
    conv7 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(up7)
    conv7 = keras.layers.BatchNormalization()(conv7)
    conv7 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(conv7)
    conv7 = keras.layers.BatchNormalization()(conv7)

    up8 = MaxUnpooling2D(size=(2, 2))([conv7, idx1])
    conv8 = keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(up8)
    conv8 = keras.layers.BatchNormalization()(conv8)
    conv8 = keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(conv8)
    conv8 = keras.layers.BatchNormalization()(conv8)

    outputs = keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(conv8)

    model = keras.models.Model(inputs=inputs, outputs=outputs)
    return model

预测部分注意事项

直接预测会出现报错:ValueError: Unknown layer: MaxPoolingWithArgmax2D

需要在load_model的时候加入声明哦

python 复制代码
model = load_model(inmodel, 
                        custom_objects={
                        'weighted_cross_entropy': weighted_cross_entropy(lossweights),
                        "loss": weighted_cross_entropy(lossweights),
                        'recall': recall, 
                        'precision':precision, 
                        'kappa_metrics':kappa_metrics,
                        'fmeasure':fmeasure, 
                        "lr": get_lr_metric,
                        'OA':OA, 
                        'tf':tf, 
                        'BS':BS, 
                        'img_h':128,
                        'img_w':128, 
                        'n_label':1,
                        "MaxPoolingWithArgmax2D": MaxPoolingWithArgmax2D, 
                        "MaxUnpooling2D": MaxUnpooling2D
                        })
相关推荐
格林威3 分钟前
近红外相机在半导体制造领域的应用
大数据·人工智能·深度学习·数码相机·视觉检测·制造·工业相机
电鱼智能的电小鱼5 分钟前
服装制造企业痛点解决方案:EFISH-SBC-RK3588 柔性化吊挂调度方案
网络·人工智能·嵌入式硬件·算法·制造
zoneyung7 分钟前
中扬立库 × 宁波卡帝亚:小家电之乡的仓储革命,破解制造仓储瓶颈
大数据·人工智能
skywalk81637 分钟前
pnpm(‌P‌erformance ‌N‌ode ‌P‌ackage ‌Manager‌)包管理工具在FreeBSD系统下的安装使用
人工智能·pnpm·freebsd·iflow
互联网江湖11 分钟前
高端手机“探花”之争,AI会成为“胜负手”吗?
大数据·人工智能
居然JuRan21 分钟前
DeepSeek-R1-Distill-Qwen-7B vLLM 部署调用
人工智能
mwq3012328 分钟前
GPT:GELU (Gaussian Error Linear Unit) 激活函数详解
人工智能
数据库安全33 分钟前
山东省某三甲医院基于分类分级的数据安全防护建设实践
大数据·人工智能
七牛云行业应用36 分钟前
从API调用到智能体编排:GPT-5时代的AI开发新模式
大数据·人工智能·gpt·openai·agent开发
StarPrayers.38 分钟前
用 PyTorch 搭建 CIFAR10 线性分类器:从数据加载到模型推理全流程解析
人工智能·pytorch·python