Keras实现SegNet

我真服了原来我之前用tf复现SegNet给复现错了

在网上试了多个版本代码,折腾了好久,现在终于复现对了,代码也跑通了

SegNet的架构比较老了,这几年都没人更新代码了,我这里算是提供一个最近能跑通的版本的代码吧

tf版本2.4.1

首先主要是构建两个类来实现池化索引,这里经过反复尝试我懵懵懂懂地解决了其它代码直接搬运过来导致的各种报错

python 复制代码
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Layer


class MaxPoolingWithArgmax2D(Layer):
    def __init__(self, pool_size=(2, 2), strides=(2, 2), padding='same', **kwargs):
        super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
        self.padding = padding
        self.pool_size = pool_size
        self.strides = strides

    def call(self, inputs, **kwargs):
        padding = self.padding
        pool_size = self.pool_size
        strides = self.strides
        if K.backend() == 'tensorflow':
            ksize = [1, pool_size[0], pool_size[1], 1]
            padding = padding.upper()
            strides = [1, strides[0], strides[1], 1]
            output, argmax = tf.nn.max_pool_with_argmax(inputs, ksize=ksize, strides=strides, padding=padding)
        else:
            errmsg = '{} backend is not supported for layer {}'.format(K.backend(), type(self).__name__)
            raise NotImplementedError(errmsg)
        argmax = K.cast(argmax, K.floatx())
        return [output, argmax]

    def compute_output_shape(self, input_shape):
        ratio = (1, 2, 2, 1)
        output_shape = [dim // ratio[idx] if dim is not None else None for idx, dim in enumerate(input_shape)]
        output_shape = tuple(output_shape)
        return [output_shape, output_shape]

    def compute_mask(self, inputs, mask=None):
        return 2 * [None]
    
    def get_config(self):
        config = super(MaxPoolingWithArgmax2D, self).get_config()
        config.update({
            "pool_size": self.pool_size,
            "strides": self.strides,
            "padding": self.padding,
        })
        return config


class MaxUnpooling2D(Layer):
    def __init__(self, size=(2, 2), **kwargs):
        super(MaxUnpooling2D, self).__init__(**kwargs)
        self.size = size

    def call(self, inputs, output_shape=None):
        updates, mask = inputs[0], inputs[1]
        with tf.compat.v1.variable_scope(self.name):
            mask = K.cast(mask, 'int32')
            input_shape = tf.shape(updates, out_type='int32')
            #  calculation new shape
            if output_shape is None:
                output_shape = (input_shape[0], input_shape[1] * self.size[0], input_shape[2] * self.size[1], input_shape[3])
                self.output_shape1 = output_shape

        # calculation indices for batch, height, width and feature maps
        one_like_mask = K.ones_like(mask, dtype='int32')
        batch_shape = K.concatenate([[input_shape[0]], [1], [1], [1]], axis=0)
        batch_range = K.reshape(tf.range(output_shape[0], dtype='int32'), shape=batch_shape)
        b = one_like_mask * batch_range
        y = mask // (output_shape[2] * output_shape[3])
        x = (mask // output_shape[3]) % output_shape[2]
        feature_range = tf.range(output_shape[3], dtype='int32')
        f = one_like_mask * feature_range

        # transpose indices & reshape update values to one dimension
        updates_size = tf.size(updates)
        indices = K.transpose(K.reshape(K.stack([b, y, x, f]), [4, updates_size]))
        values = K.reshape(updates, [updates_size])
        ret = tf.scatter_nd(indices, values, output_shape)
        input_shape = updates.shape
        out_shape = [-1,
                     input_shape[1] * self.size[0],
                     input_shape[2] * self.size[1],
                     input_shape[3]]
        return K.reshape(ret, out_shape)

    def compute_output_shape(self, input_shape):
        mask_shape = input_shape[1]
        return mask_shape[0], mask_shape[1] * self.size[0], mask_shape[2] * self.size[1], mask_shape[3]
    
    def get_config(self):
        config = super(MaxUnpooling2D, self).get_config()
        config.update({
            "size": self.size,
        })
        return config

另外SegNet网络主体部分,注意池化和反池化的时候filters数量要对得上

python 复制代码
def SegNet(fNum, dates, lossweights, filters=64):
    inputs = keras.layers.Input((fNum*dates, img_h, img_w))
    inputs0 = keras.layers.Lambda(reshapes2)(inputs) # 针对我数据的reshape

    # Encoder
    conv1 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(inputs0)
    conv1 = keras.layers.BatchNormalization()(conv1)
    conv1 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(conv1)
    conv1 = keras.layers.BatchNormalization()(conv1)
    pool1, idx1 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv1)

    conv2 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = keras.layers.BatchNormalization()(conv2)
    conv2 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(conv2)
    conv2 = keras.layers.BatchNormalization()(conv2)
    pool2, idx2 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv2)

    conv3 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = keras.layers.BatchNormalization()(conv3)
    conv3 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(conv3)
    conv3 = keras.layers.BatchNormalization()(conv3)
    pool3, idx3 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv3)

    conv4 = keras.layers.Conv2D(filters*8, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = keras.layers.BatchNormalization()(conv4)
    conv4 = keras.layers.Conv2D(filters*8, (3, 3), activation='relu', padding='same')(conv4)
    conv4 = keras.layers.BatchNormalization()(conv4)
    pool4, idx4 = MaxPoolingWithArgmax2D(pool_size=(2, 2))(conv4)

    # Decoder
    up5 = MaxUnpooling2D((2,2))([pool4, idx4])
    conv5 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(up5)
    conv5 = keras.layers.BatchNormalization()(conv5)
    conv5 = keras.layers.Conv2D(filters*4, (3, 3), activation='relu', padding='same')(conv5)
    conv5 = keras.layers.BatchNormalization()(conv5)

    up6 = MaxUnpooling2D(size=(2, 2))([conv5, idx3])
    conv6 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(up6)
    conv6 = keras.layers.BatchNormalization()(conv6)
    conv6 = keras.layers.Conv2D(filters*2, (3, 3), activation='relu', padding='same')(conv6)
    conv6 = keras.layers.BatchNormalization()(conv6)

    up7 = MaxUnpooling2D(size=(2, 2))([conv6, idx2])
    conv7 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(up7)
    conv7 = keras.layers.BatchNormalization()(conv7)
    conv7 = keras.layers.Conv2D(filters, (3, 3), activation='relu', padding='same')(conv7)
    conv7 = keras.layers.BatchNormalization()(conv7)

    up8 = MaxUnpooling2D(size=(2, 2))([conv7, idx1])
    conv8 = keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(up8)
    conv8 = keras.layers.BatchNormalization()(conv8)
    conv8 = keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same')(conv8)
    conv8 = keras.layers.BatchNormalization()(conv8)

    outputs = keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(conv8)

    model = keras.models.Model(inputs=inputs, outputs=outputs)
    return model

预测部分注意事项

直接预测会出现报错:ValueError: Unknown layer: MaxPoolingWithArgmax2D

需要在load_model的时候加入声明哦

python 复制代码
model = load_model(inmodel, 
                        custom_objects={
                        'weighted_cross_entropy': weighted_cross_entropy(lossweights),
                        "loss": weighted_cross_entropy(lossweights),
                        'recall': recall, 
                        'precision':precision, 
                        'kappa_metrics':kappa_metrics,
                        'fmeasure':fmeasure, 
                        "lr": get_lr_metric,
                        'OA':OA, 
                        'tf':tf, 
                        'BS':BS, 
                        'img_h':128,
                        'img_w':128, 
                        'n_label':1,
                        "MaxPoolingWithArgmax2D": MaxPoolingWithArgmax2D, 
                        "MaxUnpooling2D": MaxUnpooling2D
                        })
相关推荐
蹦蹦跳跳真可爱589几秒前
Python----大模型(使用api接口调用大模型)
人工智能·python·microsoft·语言模型
小爷毛毛_卓寿杰2 分钟前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
Mr.Winter`2 分钟前
障碍感知 | 基于3D激光雷达的三维膨胀栅格地图构建(附ROS C++仿真)
人工智能·机器人·自动驾驶·ros·具身智能·环境感知
好开心啊没烦恼12 分钟前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
磊叔的技术博客17 分钟前
LLM 系列(六):模型推理篇
人工智能·面试·llm
爱分享的飘哥18 分钟前
【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”
人工智能·音视频
fzyz12324 分钟前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
BIYing_Aurora27 分钟前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
数据与人工智能律师33 分钟前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
CHANG_THE_WORLD44 分钟前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉