Kafka生产者消息异步发送并返回发送信息api编写教程

1.引入依赖(pox.xml文件)

<dependencies>

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka-clients</artifactId>

<version>3.6.2</version>

</dependency>

</dependencies>

2.创建java类

3.配置运行属性

//连接的服务器

properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");

//指定对应的key和value的序列化类型

properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

//关联自定义分区器

//properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

4.创建生产者对象

键入new KafkaProducer<>(),光标置于括号内CTRL+P可以显示需要对象为properties;

键入new Properties().var 回车,键入new KafkaProducer<>(properties).var 回车,选择变量名

5.发送消息并返回发送结果

键入KafkaProducer.send(),提示需要对象ProducerRecord;键入topic名(order)和要发送的信息("0000"+i),new Callback()回车会弹出需要重写的抽象类,补全返回条件、需要返回的信息即可实现抽象类;

e == null 表示消息全部发送完毕;

6.关闭资源

KafkaProducer.close();

7.运行查看结果

运行:

可以看到有返回信息;

另开窗口查看发送结果

kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092 --topic order

信息发送成功;

8.完整代码

java 复制代码
package com.ljr.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducerCallback {
    public static void main(String[] args) {

        Properties properties = new Properties();

        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
/关联自定义分区器
//		properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        for(int i =0; i < 3; i++){
            kafkaProducer.send(new ProducerRecord<>("customers", "LiSi" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("topic:" + recordMetadata.topic() + " partition:" + recordMetadata.partition());
                    }
                }
            });
        }
        kafkaProducer.close();
    }
}
相关推荐
小李独爱秋3 小时前
深入解析MapReduce工作流程:从核心原理到实战优化
大数据·mapreduce
小样vvv6 小时前
【Es】基础入门:开启全文搜索的大门
大数据·elasticsearch·搜索引擎
黄雪超8 小时前
Flink介绍——实时计算核心论文之S4论文详解
大数据·论文阅读·flink
星光璀璨山河无恙8 小时前
【Hadoop】Hadoop3.1.4完全分布式集群搭建
大数据·hadoop·分布式
GIS数据转换器9 小时前
在机器人和无人机时代,测绘人的出路在哪里?
大数据·人工智能·信息可视化·机器人·自动驾驶·汽车·无人机
不辉放弃10 小时前
Spark 在 Python 大数据中的作用
大数据·python
Gvemis⁹10 小时前
Scala总结(二)
大数据·开发语言·scala
Elastic 中国社区官方博客11 小时前
Elasticsearch:使用 Azure AI 文档智能解析 PDF 文本和表格数据
大数据·人工智能·elasticsearch·搜索引擎·pdf·全文检索·azure
丑过三八线12 小时前
【Kafka】Kafka4.0在windows上启动
windows·分布式·kafka
dengjiayue13 小时前
kafka 与 RocketMQ对比
分布式·kafka·rocketmq