Kafka生产者消息异步发送并返回发送信息api编写教程

1.引入依赖(pox.xml文件)

<dependencies>

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka-clients</artifactId>

<version>3.6.2</version>

</dependency>

</dependencies>

2.创建java类

3.配置运行属性

//连接的服务器

properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");

//指定对应的key和value的序列化类型

properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

//关联自定义分区器

//properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

4.创建生产者对象

键入new KafkaProducer<>(),光标置于括号内CTRL+P可以显示需要对象为properties;

键入new Properties().var 回车,键入new KafkaProducer<>(properties).var 回车,选择变量名

5.发送消息并返回发送结果

键入KafkaProducer.send(),提示需要对象ProducerRecord;键入topic名(order)和要发送的信息("0000"+i),new Callback()回车会弹出需要重写的抽象类,补全返回条件、需要返回的信息即可实现抽象类;

e == null 表示消息全部发送完毕;

6.关闭资源

KafkaProducer.close();

7.运行查看结果

运行:

可以看到有返回信息;

另开窗口查看发送结果

kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092 --topic order

信息发送成功;

8.完整代码

java 复制代码
package com.ljr.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducerCallback {
    public static void main(String[] args) {

        Properties properties = new Properties();

        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
/关联自定义分区器
//		properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        for(int i =0; i < 3; i++){
            kafkaProducer.send(new ProducerRecord<>("customers", "LiSi" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("topic:" + recordMetadata.topic() + " partition:" + recordMetadata.partition());
                    }
                }
            });
        }
        kafkaProducer.close();
    }
}
相关推荐
武子康14 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术14 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
涛哥开发笔记17 小时前
Kakfa核心概念和架构
kafka
代码匠心17 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx35219 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康1 天前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g1 天前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术2 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
深圳蔓延科技2 天前
Kafka的高性能之路
后端·kafka
Lx3522 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop