Kafka生产者消息异步发送并返回发送信息api编写教程

1.引入依赖(pox.xml文件)

<dependencies>

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka-clients</artifactId>

<version>3.6.2</version>

</dependency>

</dependencies>

2.创建java类

3.配置运行属性

//连接的服务器

properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");

//指定对应的key和value的序列化类型

properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

//关联自定义分区器

//properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

4.创建生产者对象

键入new KafkaProducer<>(),光标置于括号内CTRL+P可以显示需要对象为properties;

键入new Properties().var 回车,键入new KafkaProducer<>(properties).var 回车,选择变量名

5.发送消息并返回发送结果

键入KafkaProducer.send(),提示需要对象ProducerRecord;键入topic名(order)和要发送的信息("0000"+i),new Callback()回车会弹出需要重写的抽象类,补全返回条件、需要返回的信息即可实现抽象类;

e == null 表示消息全部发送完毕;

6.关闭资源

KafkaProducer.close();

7.运行查看结果

运行:

可以看到有返回信息;

另开窗口查看发送结果

kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092 --topic order

信息发送成功;

8.完整代码

java 复制代码
package com.ljr.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducerCallback {
    public static void main(String[] args) {

        Properties properties = new Properties();

        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
/关联自定义分区器
//		properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        for(int i =0; i < 3; i++){
            kafkaProducer.send(new ProducerRecord<>("customers", "LiSi" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("topic:" + recordMetadata.topic() + " partition:" + recordMetadata.partition());
                    }
                }
            });
        }
        kafkaProducer.close();
    }
}
相关推荐
运器1239 分钟前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
mit6.8242 小时前
[es自动化更新] Updatecli编排配置.yaml | dockerfilePath值文件.yml
大数据·elasticsearch·搜索引擎·自动化
Jinkxs2 小时前
Elasticsearch 简介
大数据·elasticsearch·搜索引擎
亮学长3 小时前
lodash不支持 Tree Shaking 而 lodash-es可以
大数据·前端·elasticsearch
risc1234564 小时前
Elasticsearch 线程池
java·大数据·elasticsearch
树谷-胡老师4 小时前
1965–2022年中国大陆高分辨率分部门用水数据集,包含:灌溉用水、工业制造用水、生活用水和火电冷却
大数据·数据库·arcgis
TDengine (老段)5 小时前
TDengine 集群部署及启动、扩容、缩容常见问题与解决方案
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
青云交8 小时前
Java 大视界 -- Java 大数据机器学习模型在电商用户复购行为预测与客户关系维护中的应用(343)
java·大数据·机器学习·数据安全·电商复购·地域适配·边疆电商
贝塔西塔8 小时前
PySpark中python环境打包和JAR包依赖
大数据·开发语言·python·spark·jar·pyspark
保持学习ing8 小时前
day4--上传图片、视频
java·大数据·数据库·文件上传·minio·分布式文件系统·文件存储