Kafka生产者消息异步发送并返回发送信息api编写教程

1.引入依赖(pox.xml文件)

<dependencies>

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka-clients</artifactId>

<version>3.6.2</version>

</dependency>

</dependencies>

2.创建java类

3.配置运行属性

//连接的服务器

properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");

//指定对应的key和value的序列化类型

properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

//关联自定义分区器

//properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

4.创建生产者对象

键入new KafkaProducer<>(),光标置于括号内CTRL+P可以显示需要对象为properties;

键入new Properties().var 回车,键入new KafkaProducer<>(properties).var 回车,选择变量名

5.发送消息并返回发送结果

键入KafkaProducer.send(),提示需要对象ProducerRecord;键入topic名(order)和要发送的信息("0000"+i),new Callback()回车会弹出需要重写的抽象类,补全返回条件、需要返回的信息即可实现抽象类;

e == null 表示消息全部发送完毕;

6.关闭资源

KafkaProducer.close();

7.运行查看结果

运行:

可以看到有返回信息;

另开窗口查看发送结果

kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092 --topic order

信息发送成功;

8.完整代码

java 复制代码
package com.ljr.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducerCallback {
    public static void main(String[] args) {

        Properties properties = new Properties();

        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
/关联自定义分区器
//		properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.ljr.kafka.producer.MyPartitioner");

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        for(int i =0; i < 3; i++){
            kafkaProducer.send(new ProducerRecord<>("customers", "LiSi" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("topic:" + recordMetadata.topic() + " partition:" + recordMetadata.partition());
                    }
                }
            });
        }
        kafkaProducer.close();
    }
}
相关推荐
Hello.Reader7 小时前
Flink ExecutionConfig 实战并行度、序列化、对象重用与全局参数
java·大数据·flink
金融Tech趋势派8 小时前
企业微信AI SCRM推荐:从技术适配与场景功能实践进行评估
大数据·人工智能
JZC_xiaozhong9 小时前
异构系统集成提速:重构企业数据流转架构
大数据·重构·架构·数据分析·etl工程师·数据集成与应用集成·异构数据整合
阿里云大数据AI技术9 小时前
PAI-DLC 支持一键提交 DataJuicer 任务,高效进行大规模多模态数据处理
大数据·人工智能
易晨 微盛·企微管家9 小时前
汽车行业SCRM:企业微信+服务商模式破解汽车服务行业痛点的案例分析
大数据·人工智能·汽车·产品运营·企业微信
Apache Flink10 小时前
云栖实录|驰骋在数据洪流上:Flink+Hologres驱动零跑科技实时计算的应用与实践
大数据·科技·flink
盈创力和200711 小时前
以太网多参量传感器:超越温湿度的“智能嗅探”,守护每一方空气的安全
大数据·人工智能
wudl556611 小时前
Flink Keyed State 详解之七
大数据·flink
wudl556611 小时前
Flink Keyed State 详解之六
大数据·flink
caiyueloveclamp11 小时前
便宜好用AIPPT推荐TOP8【2025最新】
大数据·人工智能·powerpoint·ai生成ppt·aippt·免费会员