[数据集][目标检测]伤口检测数据集VOC+YOLO格式2760张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):2760

标注数量(xml文件个数):2760

标注数量(txt文件个数):2760

标注类别数:1

标注类别名称:["shangkou"]

每个类别标注的框数:

shangkou 框数 = 3443

总框数:3443

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:大部分是脚本伤口,也有一小部分是其他部分伤口

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片示例:

标注示例:

数据集下载地址:

相关推荐
AIGC大时代1 小时前
方法建议ChatGPT提示词分享
人工智能·深度学习·chatgpt·aigc·ai写作
糯米导航1 小时前
ChatGPT Prompt 编写指南
人工智能·chatgpt·prompt
Damon小智1 小时前
全面评测 DOCA 开发环境下的 DPU:性能表现、机器学习与金融高频交易下的计算能力分析
人工智能·机器学习·金融·边缘计算·nvidia·dpu·doca
赵孝正1 小时前
特征选择(机器学习)
人工智能·机器学习
QQ_7781329741 小时前
Pix2Pix:图像到图像转换的条件生成对抗网络深度解析
人工智能·神经网络
数据馅2 小时前
window系统annaconda中同时安装paddle和pytorch环境
人工智能·pytorch·paddle
高工智能汽车2 小时前
2025年新开局!谁在引领汽车AI风潮?
人工智能·汽车
不爱原创的Yoga2 小时前
自动驾驶汽车目前面临的最大技术挑战是什么?
人工智能·自动驾驶·汽车
罗小罗同学2 小时前
人工智能的出现,给生命科学领域的研究带来全新的视角|行业前沿·25-01-22
人工智能·搜索引擎·生命科学