算法(十二)分治算法

文章目录

算法概念

  • 分治算法(divide and conquer)算法的核心思想其实就是"分而治之",将原问题划分成n个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,然后就会得到原问题的解。
  • 分治和递归的区别:分治算法是种处理问题的思想,递归式一种编程技巧。
  • 分治算法的递归实现中 ,每一层递归都会涉及三个操作
    分解 :将原问题分解成一系列子问题;
    解决 :递归地求解各个子问题,若子问题足够小,则直接求解;
    合并:将子问题地结果合并成原问题。

分治算法典型地例子就是归并排序,具体请参考本人另一篇博客:算法(十)归并排序

算法例子

字符串中小写转大写

将字符串中的小写字母转化为大写字母,"abcde"转化为"ABCDE",我们可以利用分治的思想将整个字符串转化成一个一个的字符处理。

代码实现:

bash 复制代码
package com.xxliao.algorithms.divide_conquer;

/**
 * @author xxliao
 * @description: 将字符串中的小写字母转化为大写字母
 * "abcde"转化为"ABCDE"
 * 我们可以利用分治的思想将整个字符串转化成一个一个的字符处理
 * @date 2024/5/31 21:35
 */

public class Demo01 {

    public static void main(String[] args) {
        String ss="abcde";
        System.out.println(toUpCase(ss.toCharArray(),0));
    }

    /**
     * @description  将char[] 中小写字母转大写字母
     * @author  xxliao
     * @date  2024/5/31 21:39
     */
    public static char[] toUpCase(char[] array,int i){
        if(i>=array.length)
            // 递归结束条件
            return array;
        // 解决:递归地求解各个子问题,若子问题足够小,则直接求解
        array[i]=toUpCaseUnit(array[i]);
        // 向下递归
        return toUpCase(array,i+1);
    }

    /**
     * @description  char字符,小写转大写
     * @author  xxliao
     * @date  2024/5/31 21:39
     */
    public static char toUpCaseUnit(char c){
        int n=c;
        if (n<97 || n>122){
            return ' ';
        }
        return (char)Integer.parseInt(String.valueOf(n-32));
    }
}

演示结果:

求X^n问题

比如: 2^10 2的10次幂

采用分治法

2^10拆成

代码实现:

bash 复制代码
package com.xxliao.algorithms.divide_conquer;

/**
 * @author xxliao
 * @description: 比如: 2^10 2的10次幂
 * 采用分治法
 * @date 2024/5/31 21:44
 */

public class Demo02 {

    public static void main(String[] args) {
        System.out.println( dividpow(2,10) ); 
    }

    public static int dividpow(int x,int n){
        //递归结束 任何数的1次方都是它本身
        if(n==1){
            return x;
        }
        //每次分拆成幂的一半
        int half=dividpow(x,n/2);
        //偶数
        if(n%2==0){
            return half*half;
        }
        else{
            return half*half*x;
        }
    }
}

演示结果:

相关推荐
0 0 05 小时前
CCF-CSP 39-2 水印检查(watermark)【C++】
c++·算法
plus4s5 小时前
2月15日(78,80,81题)
c++·算法·图论
能源系统预测和优化研究5 小时前
【原创改进代码】考虑碳交易与电网交互波动惩罚的共享储能电站优化配置与调度模型
算法·能源
935966 小时前
机考27 翻译21 单词14
c语言·数据结构·算法
RFG20126 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
光泽雨6 小时前
C# 中 Assembly 类详解
开发语言·c#
少控科技6 小时前
C#基础训练营 - 02 - 运算器
开发语言·c#
Riemann~~7 小时前
C语言嵌入式风格
c语言·开发语言
zjttsh7 小时前
Linux下安装Redis
java
回敲代码的猴子7 小时前
2月14日打卡
算法