pytorch修改ConvNeXt-T网络

使用迁移学习,修改ConvNeXt-T网络,对特征进行融合

python 复制代码
import torch
import torch.nn as nn
import torchvision.models as models


class CustomConvNeXtT(nn.Module):
    def __init__(self, in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True):
        super(CustomConvNeXtT, self).__init__()
        self.chunk = chunk
        self.num_classes = num_classes
        self.CSV = CSV

        # 加载预训练的ConvNeXt-Tiny模型
        convnext = models.convnext_tiny(pretrained=True)

        # 冻结预训练模型的所有参数
        for name, param in convnext.named_parameters():
            param.requires_grad = False

        # 将修改后的模型赋值给自定义的ConvNeXt-T网络
        self.model = convnext

        # 修改第一个卷积层的输入通道数
        self.model.features[0][0] = nn.Conv2d(in_channels, 96, kernel_size=4, stride=4)

        # 获取特征提取器的输出特征维度
        num_ftrs = self.model.classifier[2].in_features

        # 修改分类头部
        self.model.classifier = nn.Sequential(
            nn.LayerNorm(num_ftrs * self.chunk + (csv_shape if CSV else 0), eps=1e-6, elementwise_affine=True),
            nn.Linear(num_ftrs * self.chunk + (csv_shape if CSV else 0), num_classes)
        )

    def extract_features(self, x):
        x = self.model.features(x)
        x = self.model.avgpool(x)
        x = torch.flatten(x, 1)
        return x

    def forward(self, data_DCE, data_T2, csv):
        data_DCE = self.extract_features(data_DCE)
        data_T2 = self.extract_features(data_T2)

        if not self.CSV:
            csv = torch.ones_like(csv)

        x = torch.cat((data_DCE, data_T2, csv), dim=1)
        print(f"Feature size after concatenation: {x.size()}")  # 打印特征拼接后的尺寸

        output = self.model.classifier(x)
        return output


if __name__ == '__main__':
    net = CustomConvNeXtT(in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True)
    for name, param in net.named_parameters():
        print(name, ":", param.requires_grad)

    data_DCE = torch.randn(64, 3, 224, 224)
    data_T2 = torch.randn(64, 3, 224, 224)
    csv = torch.randn(64, 107)

    output = net(data_DCE, data_T2, csv)
    print("输出特征尺寸:", output.size())
相关推荐
我的xiaodoujiao1 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 38--Allure 测试报告
python·学习·测试工具·pytest
沈浩(种子思维作者)7 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
njsgcs8 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T8 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
华研前沿标杆游学8 小时前
2026年走进洛阳格力工厂参观游学
python
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
AI小怪兽9 小时前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
齐齐大魔王9 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
wszy18099 小时前
新文章标签:让用户一眼发现最新内容
java·python·harmonyos