pytorch修改ConvNeXt-T网络

使用迁移学习,修改ConvNeXt-T网络,对特征进行融合

python 复制代码
import torch
import torch.nn as nn
import torchvision.models as models


class CustomConvNeXtT(nn.Module):
    def __init__(self, in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True):
        super(CustomConvNeXtT, self).__init__()
        self.chunk = chunk
        self.num_classes = num_classes
        self.CSV = CSV

        # 加载预训练的ConvNeXt-Tiny模型
        convnext = models.convnext_tiny(pretrained=True)

        # 冻结预训练模型的所有参数
        for name, param in convnext.named_parameters():
            param.requires_grad = False

        # 将修改后的模型赋值给自定义的ConvNeXt-T网络
        self.model = convnext

        # 修改第一个卷积层的输入通道数
        self.model.features[0][0] = nn.Conv2d(in_channels, 96, kernel_size=4, stride=4)

        # 获取特征提取器的输出特征维度
        num_ftrs = self.model.classifier[2].in_features

        # 修改分类头部
        self.model.classifier = nn.Sequential(
            nn.LayerNorm(num_ftrs * self.chunk + (csv_shape if CSV else 0), eps=1e-6, elementwise_affine=True),
            nn.Linear(num_ftrs * self.chunk + (csv_shape if CSV else 0), num_classes)
        )

    def extract_features(self, x):
        x = self.model.features(x)
        x = self.model.avgpool(x)
        x = torch.flatten(x, 1)
        return x

    def forward(self, data_DCE, data_T2, csv):
        data_DCE = self.extract_features(data_DCE)
        data_T2 = self.extract_features(data_T2)

        if not self.CSV:
            csv = torch.ones_like(csv)

        x = torch.cat((data_DCE, data_T2, csv), dim=1)
        print(f"Feature size after concatenation: {x.size()}")  # 打印特征拼接后的尺寸

        output = self.model.classifier(x)
        return output


if __name__ == '__main__':
    net = CustomConvNeXtT(in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True)
    for name, param in net.named_parameters():
        print(name, ":", param.requires_grad)

    data_DCE = torch.randn(64, 3, 224, 224)
    data_T2 = torch.randn(64, 3, 224, 224)
    csv = torch.randn(64, 107)

    output = net(data_DCE, data_T2, csv)
    print("输出特征尺寸:", output.size())
相关推荐
新手村领路人9 分钟前
opencv gpu cuda python c++版本测试代码
python·opencv·cuda
万俟淋曦12 分钟前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
高洁0123 分钟前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
white-persist43 分钟前
CSRF 漏洞全解析:从原理到实战
网络·python·安全·web安全·网络安全·系统安全·csrf
Bellafu6661 小时前
本地搭建EXAM-MASTER考试系统
python
开心-开心急了1 小时前
Flask入门教程——李辉 第三章 关键知识梳理
后端·python·flask
Moniane2 小时前
Python爬虫入门:从零到数据采集
深度学习
rannn_1112 小时前
【学以致用|python自动化办公】OCR批量识别自动存为Excel(批量识别发票)
python·ocr·excel·财务
lingchen19062 小时前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
AI视觉网奇3 小时前
pycharm 默认终端设置 cmd
ide·python·pycharm