基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真.

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

复制代码
....................................................................                   
%ssfm步长
d      = 0.001;                      
M      = S/d; 
%输入脉冲
T0     = 70*tao;   
a0     = 0.12;
%高斯脉冲
U      = a0*exp(-(t/T0).^2/2);            
U0     = U;
P0     = 1.77e7;
for m=1:1:M
    U = exp(d*r*P0*i*(abs(U).*abs(U))).*U;
    %对考虑了非线性后得到的结果进行fft变换
    U = fftshift(fft(U));
    %对上面的结果在频域内进行色散计算
    U = exp(d*(i*B2*w2/2)).*U;
    %再将结果转换到时域内
    U = ifft(ifftshift(U));
end
hold on;
plot(1e2*t,abs(U),'k-.');
grid on;
xlabel('\xi');
ylabel('a');
legend('n_0=0.1*n_c','n_0=0.3*n_c','n_0=0.4*n_c');
16_025m

4.本算法原理

分步傅立叶法是一种有效且广泛应用于求解 NLSE 的数值方法,它将非线性和扩散部分分开处理,利用傅立叶变换高效地求解线性部分。其基本思想是将时间演化分成小的时间步长Δt,并在每个时间步内,先线性地处理波动项(即施加傅立叶变换处理扩散),然后处理非线性项。具体步骤如下:

本课题的方程为:

从对比可知,这两个式子形式上是相同的,区别在于本课题的式子在标准式子基础上增加了系数。

一般情况下,常规的有有限差分法和分步傅立叶法,本文我们所使用的是分布傅立叶法,下面讲一下主要的步骤:

首先,上面的公式做如下的逐步转化:

另外,从上面的式子可以看到,整个方程中U只和Z和T相关,其余均为常系数,或者是变常系数,但这U无关,那么我们简化上面的公式,把我们的公式变为标准非线性薛定谔的表现形式。

5.完整程序

VVV

相关推荐
英英_5 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
jllllyuz6 小时前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
yugi9878388 小时前
基于遗传算法优化主动悬架模糊控制的Matlab实现
开发语言·matlab
yugi9878389 小时前
MATLAB的多层感知器(MLP)与极限学习机(ELM)实现
开发语言·matlab
崇山峻岭之间10 小时前
Matlab学习记录37
android·学习·matlab
抬头望远方15 小时前
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
开发语言·支持向量机·matlab·无人机
matlab科研助手15 小时前
【路径规划】基于遗传算法的农药无人机在多边形区域的路径规划研究附Matlab代码
开发语言·matlab·无人机
做科研的周师兄15 小时前
【MATLAB 实战】|多波段栅格数据提取部分波段均值——批量处理(NoData 修正 + 地理信息保真)_后附完整代码
前端·算法·机器学习·matlab·均值算法·分类·数据挖掘
行秋19 小时前
MATLAB 中的两大电力仿真库:Simscape Electrical(蓝色库) vs SimPowerSystems(黑色库)
开发语言·matlab
机器学习之心19 小时前
CEEMD-KPCA-PINN多变量时序光伏功率预测!互补集合经验模态分解+核主成份降维+物理信息神经网络,MATLAB代码
神经网络·机器学习·matlab·多变量时序光伏功率预测·物理信息神经网络