基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真.

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

复制代码
....................................................................                   
%ssfm步长
d      = 0.001;                      
M      = S/d; 
%输入脉冲
T0     = 70*tao;   
a0     = 0.12;
%高斯脉冲
U      = a0*exp(-(t/T0).^2/2);            
U0     = U;
P0     = 1.77e7;
for m=1:1:M
    U = exp(d*r*P0*i*(abs(U).*abs(U))).*U;
    %对考虑了非线性后得到的结果进行fft变换
    U = fftshift(fft(U));
    %对上面的结果在频域内进行色散计算
    U = exp(d*(i*B2*w2/2)).*U;
    %再将结果转换到时域内
    U = ifft(ifftshift(U));
end
hold on;
plot(1e2*t,abs(U),'k-.');
grid on;
xlabel('\xi');
ylabel('a');
legend('n_0=0.1*n_c','n_0=0.3*n_c','n_0=0.4*n_c');
16_025m

4.本算法原理

分步傅立叶法是一种有效且广泛应用于求解 NLSE 的数值方法,它将非线性和扩散部分分开处理,利用傅立叶变换高效地求解线性部分。其基本思想是将时间演化分成小的时间步长Δt,并在每个时间步内,先线性地处理波动项(即施加傅立叶变换处理扩散),然后处理非线性项。具体步骤如下:

本课题的方程为:

从对比可知,这两个式子形式上是相同的,区别在于本课题的式子在标准式子基础上增加了系数。

一般情况下,常规的有有限差分法和分步傅立叶法,本文我们所使用的是分布傅立叶法,下面讲一下主要的步骤:

首先,上面的公式做如下的逐步转化:

另外,从上面的式子可以看到,整个方程中U只和Z和T相关,其余均为常系数,或者是变常系数,但这U无关,那么我们简化上面的公式,把我们的公式变为标准非线性薛定谔的表现形式。

5.完整程序

VVV

相关推荐
崇山峻岭之间7 小时前
Matlab学习记录35
开发语言·学习·matlab
机器学习之心HML7 小时前
MATLAB基于响应面模型-多目标灰狼优化的喷墨打印纳米银导线工艺参数优化
matlab
bubiyoushang88813 小时前
基于Q-learning的路径规划MATLAB仿真程序实现
开发语言·matlab
t1987512814 小时前
红外弱小目标检测MATLAB程序
目标检测·计算机视觉·matlab
Gofarlic_OMS14 小时前
MATLAB许可证闲置自动检测与智能提醒
java·大数据·运维·开发语言·人工智能·算法·matlab
feifeigo12316 小时前
斜激波参数计算MATLAB程序
开发语言·matlab
机器学习之心16 小时前
用户用电行为分析|MATLAB基于GWO优化的DBSCAN聚类算法
算法·matlab·聚类
yong999016 小时前
基于MATLAB的HOG+SVM图像二分类实现方案
支持向量机·matlab·分类
listhi52016 小时前
空间机器人动力学正逆解及遗传算法路径规划(MATLAB实现)
算法·matlab·机器人
rit843249916 小时前
MATLAB利用二维图像生成3D形状的核心方法与实现
计算机视觉·matlab·3d