基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于分步傅立叶数值算法的一维非线性薛定谔方程求解matlab仿真.

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

复制代码
....................................................................                   
%ssfm步长
d      = 0.001;                      
M      = S/d; 
%输入脉冲
T0     = 70*tao;   
a0     = 0.12;
%高斯脉冲
U      = a0*exp(-(t/T0).^2/2);            
U0     = U;
P0     = 1.77e7;
for m=1:1:M
    U = exp(d*r*P0*i*(abs(U).*abs(U))).*U;
    %对考虑了非线性后得到的结果进行fft变换
    U = fftshift(fft(U));
    %对上面的结果在频域内进行色散计算
    U = exp(d*(i*B2*w2/2)).*U;
    %再将结果转换到时域内
    U = ifft(ifftshift(U));
end
hold on;
plot(1e2*t,abs(U),'k-.');
grid on;
xlabel('\xi');
ylabel('a');
legend('n_0=0.1*n_c','n_0=0.3*n_c','n_0=0.4*n_c');
16_025m

4.本算法原理

分步傅立叶法是一种有效且广泛应用于求解 NLSE 的数值方法,它将非线性和扩散部分分开处理,利用傅立叶变换高效地求解线性部分。其基本思想是将时间演化分成小的时间步长Δt,并在每个时间步内,先线性地处理波动项(即施加傅立叶变换处理扩散),然后处理非线性项。具体步骤如下:

本课题的方程为:

从对比可知,这两个式子形式上是相同的,区别在于本课题的式子在标准式子基础上增加了系数。

一般情况下,常规的有有限差分法和分步傅立叶法,本文我们所使用的是分布傅立叶法,下面讲一下主要的步骤:

首先,上面的公式做如下的逐步转化:

另外,从上面的式子可以看到,整个方程中U只和Z和T相关,其余均为常系数,或者是变常系数,但这U无关,那么我们简化上面的公式,把我们的公式变为标准非线性薛定谔的表现形式。

5.完整程序

VVV

相关推荐
Evand J3 小时前
【MATLAB例程】基于USBL和DVL的线性回归误差补偿,对USBL和DVL导航数据进行相互补偿,提高定位精度,附代码下载链接
开发语言·matlab·线性回归·水下定位·usbl·dvl
mjhcsp7 小时前
MATLAB 疑难问题诊疗:从常见报错到深度优化的全流程指南
开发语言·matlab
Dave.B10 小时前
MatGeom——一个基于 MATLAB 的几何处理库
matlab
88号技师10 小时前
2025年8月SCI-汉尼拔·巴卡优化算法Hannibal Barca optimizer-附Matlab免费代码
开发语言·人工智能·算法·数学建模·matlab·优化算法
机器学习之心HML1 天前
MATLAB基于GWO-BP神经网络对某拨叉件锻造金属流动性的参数分析
开发语言·神经网络·matlab
珞瑜·2 天前
MATLAB2025B版本新特点
matlab
信息快讯2 天前
“COMSOL+MATLAB光子学仿真:从入门到精通,掌握多物理场建模
开发语言·matlab·comsol·光学工程
北山太湖2 天前
Matlab安装硬件支持包
开发语言·matlab
霖004 天前
ZYNQ裸机开发指南笔记
人工智能·经验分享·笔记·matlab·fpga开发·信号处理
ghie90904 天前
基于MATLAB的遗传算法优化支持向量机实现
算法·支持向量机·matlab