多源图像配准算法

热红外与可见光图像的配准(Registration)方法主要可以归纳为以下几类:

  1. 基于边缘特征的图像配准方法
    • 原理:该方法首先将在同一场景下的可见光图像和红外热像两张图像转换为相同分辨率(即相同尺寸规格)的图像。然后,利用边缘检测、角点检测等函数找出关键点,完成对处理后的两张图像进行点到点的配准。
    • 特点:实时性好、鲁棒性高,能有效抵御干扰点。
  2. 基于特征信息的配准方法
    • 原理:该算法只需要提取待配准图像中的点、线、边缘等特征信息,不需要其它辅助信息。通过对这些特征信息的匹配,实现图像的配准。
    • 特点:减少了计算量、提高了效率,同时对图像灰度的变化有一定的鲁棒性。然而,这种算法对特征提取和特征匹配的精度及准确性要求非常高,对错误非常敏感。
  3. 基于变换域的配准方法
    • 原理:这种方法通常是利用傅里叶变换为基础,进行频域内的配准。傅里叶变换能够用于具有平移、旋转、缩放的图像配准中。
    • 特点:适用于具有平移、旋转、缩放变换的图像配准。
  4. 基于神经网络的配准方法
    • 原理:利用神经网络模仿传统配准算法提取描述子,匹配,估计变换参数,变换图像的过程。这种方法可以实现非光心重合的热红外相机与可见光相机的像素级配准。
    • 特点:结合了深度学习的优点,可以实现更为复杂和准确的图像配准。
  5. 多尺度变换的融合方法
    • 原理:假定图像由不同颗粒的不同层次表示,将源图像分解成多个层次,用特定的规则融合相应的层次,并相应地重建目标图像。
    • 特点:能够充分利用不同尺度的信息,实现更为精细的图像配准。
相关推荐
罗湖老棍子5 分钟前
强迫症冒险家的任务清单:字典序最小拓扑排序
数据结构·算法·图论·拓扑排序
不穿格子的程序员29 分钟前
从零开始写算法——回溯篇4:分割回文串 + N皇后
算法·深度优先·dfs
ScilogyHunter35 分钟前
qBI有什么用
算法·qbi
龙山云仓1 小时前
No131:AI中国故事-对话荀子——性恶论与AI约束:礼法并用、化性起伪与算法治理
大数据·人工智能·深度学习·算法·机器学习
夏鹏今天学习了吗1 小时前
【LeetCode热题100(90/100)】编辑距离
算法·leetcode·职场和发展
芒克芒克2 小时前
数组去重进阶:一次遍历实现最多保留指定个数重复元素(O(n)时间+O(1)空间)
数据结构·算法
星火开发设计2 小时前
二维数组:矩阵存储与多维数组的内存布局
开发语言·c++·人工智能·算法·矩阵·函数·知识
丨康有为丨2 小时前
算法时间复杂度和空间复杂度
算法
HarmonLTS3 小时前
Python人工智能深度开发:技术体系、核心实践与工程化落地
开发语言·人工智能·python·算法
a程序小傲3 小时前
京东Java面试被问:RPC调用的熔断降级和自适应限流
java·开发语言·算法·面试·职场和发展·rpc·边缘计算