多源图像配准算法

热红外与可见光图像的配准(Registration)方法主要可以归纳为以下几类:

  1. 基于边缘特征的图像配准方法
    • 原理:该方法首先将在同一场景下的可见光图像和红外热像两张图像转换为相同分辨率(即相同尺寸规格)的图像。然后,利用边缘检测、角点检测等函数找出关键点,完成对处理后的两张图像进行点到点的配准。
    • 特点:实时性好、鲁棒性高,能有效抵御干扰点。
  2. 基于特征信息的配准方法
    • 原理:该算法只需要提取待配准图像中的点、线、边缘等特征信息,不需要其它辅助信息。通过对这些特征信息的匹配,实现图像的配准。
    • 特点:减少了计算量、提高了效率,同时对图像灰度的变化有一定的鲁棒性。然而,这种算法对特征提取和特征匹配的精度及准确性要求非常高,对错误非常敏感。
  3. 基于变换域的配准方法
    • 原理:这种方法通常是利用傅里叶变换为基础,进行频域内的配准。傅里叶变换能够用于具有平移、旋转、缩放的图像配准中。
    • 特点:适用于具有平移、旋转、缩放变换的图像配准。
  4. 基于神经网络的配准方法
    • 原理:利用神经网络模仿传统配准算法提取描述子,匹配,估计变换参数,变换图像的过程。这种方法可以实现非光心重合的热红外相机与可见光相机的像素级配准。
    • 特点:结合了深度学习的优点,可以实现更为复杂和准确的图像配准。
  5. 多尺度变换的融合方法
    • 原理:假定图像由不同颗粒的不同层次表示,将源图像分解成多个层次,用特定的规则融合相应的层次,并相应地重建目标图像。
    • 特点:能够充分利用不同尺度的信息,实现更为精细的图像配准。
相关推荐
田里的水稻15 分钟前
FA_规划和控制(PC)-瑞德斯.谢普路径规划(RSPP))
人工智能·算法·数学建模·机器人·自动驾驶
罗湖老棍子21 分钟前
【例 1】二叉苹果树(信息学奥赛一本通- P1575)
算法·树上背包·树型动态规划
元亓亓亓1 小时前
LeetCode热题100--76. 最小覆盖子串--困难
算法·leetcode·职场和发展
CHANG_THE_WORLD1 小时前
C++数组地址传递与数据影响:深入理解指针与内存
算法
json{shen:"jing"}1 小时前
力扣-单词拆分
数据结构·算法
aaa7871 小时前
Codeforces Round 1080 (Div. 3) 题解
数据结构·算法
浮生09192 小时前
DHUOJ 基础 85 86 87
数据结构·c++·算法
say_fall2 小时前
双指针算法详解:从原理到实战(含LeetCode经典例题)
算法·leetcode·职场和发展
追随者永远是胜利者2 小时前
(LeetCode-Hot100)33. 搜索旋转排序数组
java·算法·leetcode·职场和发展·go
你怎么知道我是队长2 小时前
计算机系统基础3---值的表示2---定点数与浮点数的介绍
算法