多源图像配准算法

热红外与可见光图像的配准(Registration)方法主要可以归纳为以下几类:

  1. 基于边缘特征的图像配准方法
    • 原理:该方法首先将在同一场景下的可见光图像和红外热像两张图像转换为相同分辨率(即相同尺寸规格)的图像。然后,利用边缘检测、角点检测等函数找出关键点,完成对处理后的两张图像进行点到点的配准。
    • 特点:实时性好、鲁棒性高,能有效抵御干扰点。
  2. 基于特征信息的配准方法
    • 原理:该算法只需要提取待配准图像中的点、线、边缘等特征信息,不需要其它辅助信息。通过对这些特征信息的匹配,实现图像的配准。
    • 特点:减少了计算量、提高了效率,同时对图像灰度的变化有一定的鲁棒性。然而,这种算法对特征提取和特征匹配的精度及准确性要求非常高,对错误非常敏感。
  3. 基于变换域的配准方法
    • 原理:这种方法通常是利用傅里叶变换为基础,进行频域内的配准。傅里叶变换能够用于具有平移、旋转、缩放的图像配准中。
    • 特点:适用于具有平移、旋转、缩放变换的图像配准。
  4. 基于神经网络的配准方法
    • 原理:利用神经网络模仿传统配准算法提取描述子,匹配,估计变换参数,变换图像的过程。这种方法可以实现非光心重合的热红外相机与可见光相机的像素级配准。
    • 特点:结合了深度学习的优点,可以实现更为复杂和准确的图像配准。
  5. 多尺度变换的融合方法
    • 原理:假定图像由不同颗粒的不同层次表示,将源图像分解成多个层次,用特定的规则融合相应的层次,并相应地重建目标图像。
    • 特点:能够充分利用不同尺度的信息,实现更为精细的图像配准。
相关推荐
草莓熊Lotso14 分钟前
【数据结构初阶】--算法复杂度的深度解析
c语言·开发语言·数据结构·经验分享·笔记·其他·算法
KyollBM20 分钟前
【CF】Day75——CF (Div. 2) B (数学 + 贪心) + CF 882 (Div. 2) C (01Trie | 区间最大异或和)
c语言·c++·算法
CV点灯大师35 分钟前
C++算法训练营 Day10 栈与队列(1)
c++·redis·算法
GGBondlctrl1 小时前
【leetcode】递归,回溯思想 + 巧妙解法-解决“N皇后”,以及“解数独”题目
算法·leetcode·n皇后·有效的数独·解数独·映射思想·数学思想
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
Andrew_Xzw2 小时前
数据结构与算法(快速基础C++版)
开发语言·数据结构·c++·python·深度学习·算法
超的小宝贝3 小时前
数据结构算法(C语言)
c语言·数据结构·算法
木子.李3479 小时前
排序算法总结(C++)
c++·算法·排序算法