多源图像配准算法

热红外与可见光图像的配准(Registration)方法主要可以归纳为以下几类:

  1. 基于边缘特征的图像配准方法
    • 原理:该方法首先将在同一场景下的可见光图像和红外热像两张图像转换为相同分辨率(即相同尺寸规格)的图像。然后,利用边缘检测、角点检测等函数找出关键点,完成对处理后的两张图像进行点到点的配准。
    • 特点:实时性好、鲁棒性高,能有效抵御干扰点。
  2. 基于特征信息的配准方法
    • 原理:该算法只需要提取待配准图像中的点、线、边缘等特征信息,不需要其它辅助信息。通过对这些特征信息的匹配,实现图像的配准。
    • 特点:减少了计算量、提高了效率,同时对图像灰度的变化有一定的鲁棒性。然而,这种算法对特征提取和特征匹配的精度及准确性要求非常高,对错误非常敏感。
  3. 基于变换域的配准方法
    • 原理:这种方法通常是利用傅里叶变换为基础,进行频域内的配准。傅里叶变换能够用于具有平移、旋转、缩放的图像配准中。
    • 特点:适用于具有平移、旋转、缩放变换的图像配准。
  4. 基于神经网络的配准方法
    • 原理:利用神经网络模仿传统配准算法提取描述子,匹配,估计变换参数,变换图像的过程。这种方法可以实现非光心重合的热红外相机与可见光相机的像素级配准。
    • 特点:结合了深度学习的优点,可以实现更为复杂和准确的图像配准。
  5. 多尺度变换的融合方法
    • 原理:假定图像由不同颗粒的不同层次表示,将源图像分解成多个层次,用特定的规则融合相应的层次,并相应地重建目标图像。
    • 特点:能够充分利用不同尺度的信息,实现更为精细的图像配准。
相关推荐
Fanxt_Ja10 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下10 小时前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶10 小时前
算法 --- 字符串
算法
博笙困了10 小时前
AcWing学习——差分
c++·算法
NAGNIP10 小时前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP10 小时前
大模型微调框架之LLaMA Factory
算法
echoarts11 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Python技术极客11 小时前
一款超好用的 Python 交互式可视化工具,强烈推荐~
算法
徐小夕11 小时前
花了一天时间,开源了一套精美且支持复杂操作的表格编辑器tablejs
前端·算法·github
小刘鸭地下城11 小时前
深入浅出链表:从基础概念到核心操作全面解析
算法