数据库与缓存⼀致性⽅案

数据库与缓存⼀致性⽅案

1、背景

现有的业务场景下,都会涉及到数据库以及缓存双写的问题,⽆论是先删除缓存,再更新数据,或者先更新数据,再删除缓存,都⽆法保证数据的⼀致性。本身他们就不是⼀个数据源,⽆法通过代码上的谁先谁后去保证顺序

2、数据⼀致性⽅案设计

⾸先我们对于所有的DB操作都不去添加具体的删除缓存的操作,⽽是通过canal监听binlog的⽅式,待数据确认已提交到数据库后,通过监听的变化,解析出对应的数据后,过滤掉⾮增删改的binlog,然后通过常量类配置的需要处理数据⼀致性的相关表以及关键字段和缓存前缀key,进⾏组装出需要进⾏删除的缓存key。并且通过mq的ack机制来保证 缓存⼀定会被删除掉。

3、数据⼀致性⽅案流程图

4、关键代码

4.1、 处理数据⼀致性的消息队列⼊⼝

java 复制代码
@Slf4j
@Component
public class CookbookConsistencyListener implements
MessageListenerConcurrently {
@Autowired
private RedisCache redisCache;
/**
* 处理mysql的binlog变化,处理对应的需要清理的缓存key
* @param list
* @param consumeConcurrentlyContext
* @return
*/
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> list,
ConsumeConcurrentlyContext consumeConcurrentlyContext) {
try {
for (MessageExt messageExt : list) {
String msg = new String(messageExt.getBody());
// 解析binlog数据模型,并过滤掉查询
BinlogDataDTO binlogData = buildBinlogData(msg);
// 获取binlog的模型,获取本次变化的表名称,在本地配置常量类⾥⾯匹配对
应的缓存key前缀以及缓存标识字段,⾮配置的表不进⾏处理
String cacheKey = filterConsistencyTable(binlogData);
// 删除该key的缓存
deleteCacheKey(cacheKey);
}
} catch (Exception e) {
log.error("consume error, 缓存清理失败", e);
// 本次消费失败,下次重新消费
return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
}

4.2、数据⼀致性配置的常量信息

java 复制代码
public enum ConsistencyTableEnum {
/**
* 商品表缓存配置
*/
SKU_INFO ("sku_info", RedisKeyConstants.GOODS_INFO_PREFIX,"id");
/**
* 配置相关的表名称
*/
private final String tableName;
/**
* 缓存的前缀key
*/
private final String cacheKey;
/**
* 缓存的标识字段
*/
private final String cacheField;
}
相关推荐
Leo.yuan41 分钟前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
Runing_WoNiu1 小时前
MySQL与Oracle对比及区别
数据库·mysql·oracle
天道有情战天下1 小时前
mysql锁机制详解
数据库·mysql
看山还是山,看水还是。1 小时前
Redis 配置
运维·数据库·redis·安全·缓存·测试覆盖率
谷新龙0011 小时前
Redis运行时的10大重要指标
数据库·redis·缓存
CodingBrother1 小时前
MySQL 中单列索引与联合索引分析
数据库·mysql
精进攻城狮@1 小时前
Redis缓存雪崩、缓存击穿、缓存穿透
数据库·redis·缓存
小酋仍在学习2 小时前
光驱验证 MD5 校验和
数据库·postgresql
keep__go2 小时前
Linux 批量配置互信
linux·运维·服务器·数据库·shell
小王同学mf2 小时前
怎么尽可能保证 Kafka 的可靠性
数据库