AIGC笔记--SVD中UNet加载预训练权重

1--加载方式

  1. 加载全参数(.ckpt)

  2. 加载LoRA(.safetensors)

2--简单实例

python 复制代码
import sys
sys.path.append("/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion")

import torch
from peft import LoraConfig
from safetensors import safe_open

from svd.models.i2v_svd_unet import UNetSpatioTemporalConditionModel
from svd.utils.util import zero_rank_print

if __name__ == "__main__":

    pretrained_model_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/svd_models/models/stable-video-diffusion-img2vid-xt"
    unet = UNetSpatioTemporalConditionModel.from_pretrained(pretrained_model_path, subfolder = "unet")

    # resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionlora_realRota_0603_1024_stride5/test-0-2024-06-03T14-31-30/checkpoints/checkpoint-500.safetensors"
    resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionFull_realRota_0529_stride5/test-0-2024-05-29T10-04-34/checkpoints/checkpoint-step-5000.ckpt"

    # Load pretrained unet weights
    if resume_checkpoint_path.endswith(".ckpt"):
        zero_rank_print(f"resume from checkpoint: {resume_checkpoint_path}")
        resume_checkpoint = torch.load(resume_checkpoint_path, map_location="cpu")
        # resume dit parameters
        print(f'resume_checkpoint keys: {resume_checkpoint.keys()}')
        state_dict = resume_checkpoint["state_dict"]
        m, u = unet.load_state_dict(state_dict, strict=False)
        zero_rank_print(f"dit missing keys: {len(m)}, unexpected keys: {len(u)}")
        assert len(u) == 0
        # resume global step
        resume_global_step = False
        if "global_step" in resume_checkpoint and resume_global_step:
            zero_rank_print(f"resume global_step: {resume_checkpoint['global_step']}")
            global_step = resume_checkpoint['global_step']    
            
    elif resume_checkpoint_path.endswith(".safetensors"):

        unet_lora_config = LoraConfig(
            r = 64, 
            lora_alpha = 64, # scaling = lora_alpha / r
            init_lora_weights = "gaussian", 
            target_modules = ["to_q","to_k","to_v","to_out.0"],
            lora_dropout = 0.1
        )
        unet.add_adapter(unet_lora_config)

        zero_rank_print(f"resume from safetensors: {resume_checkpoint_path}")
        
        state_dict = {}
        with safe_open(resume_checkpoint_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                key_ = key.replace('unet.', '').replace('.weight', '')
                state_dict[key_] = f.get_tensor(key)

                u = 0
                try:
                    unet.get_submodule(key_+'.default').state_dict()['weight'].data.copy_(state_dict[key_])
                except:
                    u += 1
        assert u == 0, "resume unet params failed"

    print("All Done!")
相关推荐
AI白艿14 小时前
告别同质化竞争,先知AI赋予男装品牌独特智慧基因
人工智能·aigc
阿杰学AI17 小时前
AI核心知识67——大语言模型之NTP (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·ntp·机械学习
下海fallsea17 小时前
安踏为何执着于“买买买”
人工智能·aigc
阿杰学AI20 小时前
AI核心知识68——大语言模型之NSP (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·nsp·下一状态预测
秋名山大前端1 天前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
视觉&物联智能2 天前
【杂谈】-2026年人工智能发展趋势:智能体崛起、行业洗牌与安全挑战
人工智能·安全·llm·aigc·agi·智能体
AI茶皖2 天前
先知AI如何破解男装行业AIGC应用困局?
aigc
学习3人组2 天前
Nano Banana Gemini 2.5 Flash Image闭源API提供服务
aigc·nano banana
GISer_Jing2 天前
一次编码,七端运行:Taro多端统一架构深度解析与电商实战
前端·aigc·taro