AIGC笔记--SVD中UNet加载预训练权重

1--加载方式

  1. 加载全参数(.ckpt)

  2. 加载LoRA(.safetensors)

2--简单实例

python 复制代码
import sys
sys.path.append("/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion")

import torch
from peft import LoraConfig
from safetensors import safe_open

from svd.models.i2v_svd_unet import UNetSpatioTemporalConditionModel
from svd.utils.util import zero_rank_print

if __name__ == "__main__":

    pretrained_model_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/svd_models/models/stable-video-diffusion-img2vid-xt"
    unet = UNetSpatioTemporalConditionModel.from_pretrained(pretrained_model_path, subfolder = "unet")

    # resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionlora_realRota_0603_1024_stride5/test-0-2024-06-03T14-31-30/checkpoints/checkpoint-500.safetensors"
    resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionFull_realRota_0529_stride5/test-0-2024-05-29T10-04-34/checkpoints/checkpoint-step-5000.ckpt"

    # Load pretrained unet weights
    if resume_checkpoint_path.endswith(".ckpt"):
        zero_rank_print(f"resume from checkpoint: {resume_checkpoint_path}")
        resume_checkpoint = torch.load(resume_checkpoint_path, map_location="cpu")
        # resume dit parameters
        print(f'resume_checkpoint keys: {resume_checkpoint.keys()}')
        state_dict = resume_checkpoint["state_dict"]
        m, u = unet.load_state_dict(state_dict, strict=False)
        zero_rank_print(f"dit missing keys: {len(m)}, unexpected keys: {len(u)}")
        assert len(u) == 0
        # resume global step
        resume_global_step = False
        if "global_step" in resume_checkpoint and resume_global_step:
            zero_rank_print(f"resume global_step: {resume_checkpoint['global_step']}")
            global_step = resume_checkpoint['global_step']    
            
    elif resume_checkpoint_path.endswith(".safetensors"):

        unet_lora_config = LoraConfig(
            r = 64, 
            lora_alpha = 64, # scaling = lora_alpha / r
            init_lora_weights = "gaussian", 
            target_modules = ["to_q","to_k","to_v","to_out.0"],
            lora_dropout = 0.1
        )
        unet.add_adapter(unet_lora_config)

        zero_rank_print(f"resume from safetensors: {resume_checkpoint_path}")
        
        state_dict = {}
        with safe_open(resume_checkpoint_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                key_ = key.replace('unet.', '').replace('.weight', '')
                state_dict[key_] = f.get_tensor(key)

                u = 0
                try:
                    unet.get_submodule(key_+'.default').state_dict()['weight'].data.copy_(state_dict[key_])
                except:
                    u += 1
        assert u == 0, "resume unet params failed"

    print("All Done!")
相关推荐
AI生成未来30 分钟前
北交&字节最新开源ThinkGen:首次显式利用多模态CoT处理生成任务,多项任务性能SOTA
计算机视觉·aigc·多模态·思维链·视觉生成
z日火33 分钟前
腾讯云VOD AIGC视频生成工具 回调实现
aigc·音视频·腾讯云
undsky1 小时前
【n8n教程】:AI Agent节点,构建你的智能自动化机器人
aigc·ai编程
imbackneverdie3 小时前
研究生如何高效完成文献综述并提炼创新点?
人工智能·ai·语言模型·自然语言处理·aigc·ai写作
Jagger_3 小时前
读《纳瓦尔宝典》的一些真实想法
aigc
Mintopia4 小时前
2025,我的「Vibe Coding」时刻
前端·人工智能·aigc
shayudiandian4 小时前
AI生成内容(AIGC)在游戏与影视行业的落地案例
人工智能·游戏·aigc
AI生成未来6 小时前
复刻“黑客帝国”子弹时间!SpaceTimePilot:视频变可操控4D游戏,倒放/变速/运镜随你掌控
人工智能·aigc·扩散模型·视频生成
小霖家的混江龙6 小时前
不再费脑, 手算 Attention 公式, 理解 Transformer 注意力的数学本质
人工智能·llm·aigc
用户479492835691517 小时前
怕 AI 乱改代码?教你用 Hooks 给 Claude Code 戴上"紧箍咒"
aigc·ai编程·claude