AIGC笔记--SVD中UNet加载预训练权重

1--加载方式

  1. 加载全参数(.ckpt)

  2. 加载LoRA(.safetensors)

2--简单实例

python 复制代码
import sys
sys.path.append("/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion")

import torch
from peft import LoraConfig
from safetensors import safe_open

from svd.models.i2v_svd_unet import UNetSpatioTemporalConditionModel
from svd.utils.util import zero_rank_print

if __name__ == "__main__":

    pretrained_model_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/svd_models/models/stable-video-diffusion-img2vid-xt"
    unet = UNetSpatioTemporalConditionModel.from_pretrained(pretrained_model_path, subfolder = "unet")

    # resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionlora_realRota_0603_1024_stride5/test-0-2024-06-03T14-31-30/checkpoints/checkpoint-500.safetensors"
    resume_checkpoint_path = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/Codes/v3d-vgen-motion/results/outputs_motionFull_realRota_0529_stride5/test-0-2024-05-29T10-04-34/checkpoints/checkpoint-step-5000.ckpt"

    # Load pretrained unet weights
    if resume_checkpoint_path.endswith(".ckpt"):
        zero_rank_print(f"resume from checkpoint: {resume_checkpoint_path}")
        resume_checkpoint = torch.load(resume_checkpoint_path, map_location="cpu")
        # resume dit parameters
        print(f'resume_checkpoint keys: {resume_checkpoint.keys()}')
        state_dict = resume_checkpoint["state_dict"]
        m, u = unet.load_state_dict(state_dict, strict=False)
        zero_rank_print(f"dit missing keys: {len(m)}, unexpected keys: {len(u)}")
        assert len(u) == 0
        # resume global step
        resume_global_step = False
        if "global_step" in resume_checkpoint and resume_global_step:
            zero_rank_print(f"resume global_step: {resume_checkpoint['global_step']}")
            global_step = resume_checkpoint['global_step']    
            
    elif resume_checkpoint_path.endswith(".safetensors"):

        unet_lora_config = LoraConfig(
            r = 64, 
            lora_alpha = 64, # scaling = lora_alpha / r
            init_lora_weights = "gaussian", 
            target_modules = ["to_q","to_k","to_v","to_out.0"],
            lora_dropout = 0.1
        )
        unet.add_adapter(unet_lora_config)

        zero_rank_print(f"resume from safetensors: {resume_checkpoint_path}")
        
        state_dict = {}
        with safe_open(resume_checkpoint_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                key_ = key.replace('unet.', '').replace('.weight', '')
                state_dict[key_] = f.get_tensor(key)

                u = 0
                try:
                    unet.get_submodule(key_+'.default').state_dict()['weight'].data.copy_(state_dict[key_])
                except:
                    u += 1
        assert u == 0, "resume unet params failed"

    print("All Done!")
相关推荐
轻语呢喃1 小时前
React智能前端:从零开始写的图片分析页面实战
前端·react.js·aigc
字节跳动视频云技术团队1 小时前
ICME 2025 | 火山引擎在国际音频编码能力挑战赛中夺得冠军
llm·aigc·音视频开发
量子位2 小时前
谁是余家辉?“年薪 1 亿美元”AI 研究员,中科大少年班天才,吴永辉的嫡系弟子
aigc·ai编程
redreamSo4 小时前
AI Daily | AI日报:ChatGPT识破10年顽疾,医疗AI震撼登场; 微信支付MCP开放,机遇与风险并存; 蒙娜丽莎图让大模型几乎全军覆没
程序员·aigc·资讯
泽芝5 小时前
噪点废片拯救:ComfyUI Upscale 给萤火虫照片做像素整容
aigc
FogLetter6 小时前
智能前端之拍照识别单词(下):AI集成与交互优化
前端·aigc·openai
PetterHillWater6 小时前
基于CodeBuddy自定义Agent知识库重构实践
aigc
小和尚同志18 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
堆栈future19 小时前
manus终于开放啦
llm·aigc·agent