本地部署Whisper实现语言转文字

文章目录

本地部署Whisper实现语言转文字

1.前置条件

环境windows10 64位

2.安装chocolatey

复制代码
安装chocolatey目的是安装ffpeg

以管理员身份运行PowerShell

粘贴命令

复制代码
Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))

安装成功打入choco

安装文件夹路径

复制代码
C:\ProgramData\chocolatey

3.安装ffmpeg

复制代码
choco install ffmpeg

4.安装whisper

复制代码
pip install git+https://github.com/openai/whisper.git

安装完成运行

复制代码
pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git

安装完成

5.测试用例

直接命令行

复制代码
whisper yoump3.mp3

6.命令行用法

以下命令将使用medium模型转录音频文件中的语音:

复制代码
whisper audio.flac audio.mp3 audio.wav --model medium

默认设置(选择模型small)非常适合转录英语。要转录包含非英语语音的音频文件,您可以使用以下选项指定语言--language

复制代码
whisper japanese.wav --language Japanese

添加--task translate后将把演讲翻译成英文:

复制代码
whisper japanese.wav --language Japanese --task translate

运行以下命令查看所有可用选项:

复制代码
whisper --help

7.本地硬件受限,借用hugging face资源进行转译

进入huggingface网址,往下拉

复制代码
https://huggingface.co/openai/whisper-large-v3

粘贴上述代码

复制代码
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "openai/whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]

result = pipe(sample)
print(result["text"])

修改本地代码,将sample修改为,需要转录的录音,接入代理;

复制代码
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset

import os
os.environ['CURL_CA_BUNDLE'] = ''
os.environ["http_proxy"] = "http://127.0.0.1:7890"
os.environ["https_proxy"] = "http://127.0.0.1:7890"

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "openai/whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]

result = pipe("myaudio")
print(result["text"])

借用huggingface的速度,速度取决于网速

相关推荐
小李子不吃李子8 分钟前
人工智能与创新第二章练习题
人工智能·学习
deephub20 分钟前
Lux 上手指南:让 AI 直接操作你的电脑
人工智能·python·大语言模型·agent
byzh_rc27 分钟前
[模式识别-从入门到入土] 专栏总结
人工智能·机器学习
yesyesyoucan30 分钟前
标题:AI图片背景去除全能站:从复杂场景到透明底图的智能解构方案
人工智能
ai_xiaogui32 分钟前
Panelai 深度解析:新一代 AI 服务器管理面板,如何实现闲置算力变现与多租户商业化部署?
人工智能·零基础部署 comfyui·多租户 ai 计费面板·gpu 算力租赁平台搭建·私有化 ai 部署商业方案
LINGYI00044 分钟前
什么是品牌全案?新品牌如何制定品牌规划?
人工智能·天猫代运营·品牌全案
AGI_Eval1 小时前
AGI-Eval 2025年度报告精选 | 以数据为尺,度量智能边界
人工智能
策知道1 小时前
从“抗旱保苗”到“修渠引水”:读懂五年财政政策的变奏曲
大数据·数据库·人工智能·搜索引擎·政务
洞见新研社1 小时前
从实验室走向真实世界,2025年具身智能的产业突破与挑战
人工智能
XC131489082671 小时前
法律行业获客,如何用科技手段突破案源瓶颈的实操方法
大数据·人工智能·科技