Hadoop3:MapReduce源码解读之Map阶段的CombineFileInputFormat切片机制(4)

Job那块的断点代码截图省略,直接进入切片逻辑

参考:Hadoop3:MapReduce源码解读之Map阶段的Job任务提交流程(1)

6、CombineFileInputFormat原理解析

类的继承关系

TextInputFormat切片机制的区别

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。
CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。

所以,这个切片机制是针对处理大量小文件的,效率比TextInputFormat更高。

切片过程说明

生成切片过程包括:虚拟存储过程和切片过程二部分。

注意

当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。

例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。

案例

准备4个文件

依然用wordcount案例进行演练

指定文件路径和切片类CombineFileInputFormat

java 复制代码
		// 如果不设置InputFormat,它默认用的是TextInputFormat.class
		job.setInputFormatClass(CombineTextInputFormat.class);
		//虚拟存储切片最大值设置4m
		CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);

查看执行日志:
number of splits:3

所以,对应的MapTask线程数量就是3个,Reducer线程数是1个。

相关推荐
expect7g35 分钟前
Paimon源码解读 -- Compaction-6.CompactStrategy
大数据·后端·flink
武子康2 小时前
大数据-183 Elasticsearch - 并发冲突与乐观锁、分布式数据一致性剖析
大数据·后端·elasticsearch
Hello.Reader2 小时前
Flink SQL Top-N 深度从“实时榜单”到“少写点数据”
大数据·sql·flink
梦里不知身是客112 小时前
Combiner在mapreduce中的作用
大数据·mapreduce
ha_lydms3 小时前
Spark函数
大数据·分布式·spark
相思半3 小时前
机器学习模型实战全解析
大数据·人工智能·笔记·python·机器学习·数据挖掘·transformer
semantist@语校4 小时前
第五十四篇|从事实字段到推理边界:名古屋国际外语学院Prompt生成中的过度推断防御设计
大数据·linux·服务器·人工智能·百度·语言模型·prompt
秋刀鱼 ..4 小时前
第二届电气、自动化与人工智能国际学术会议(ICEAAI 2026)
大数据·运维·人工智能·机器人·自动化
2401_878820475 小时前
Elasticsearch(ES)搜索引擎
大数据·elasticsearch·搜索引擎
数智顾问5 小时前
(102页PPT)数字化转型,从战略到执行(附下载方式)
大数据·人工智能·物联网