Python pandas openpyxl excel合并单元格,设置边框,背景色

Python pandas openpyxl excel合并单元格,设置边框,背景色

    • [1. 效果图](#1. 效果图)
    • [2. 源码](#2. 源码)
    • 参考

1. 效果图

pandas设置单元格背景色,字体颜色,边框

openpyxl合并单元格,设置丰富的字体

2. 源码

python 复制代码
# excel数字与列名互转
import os

import numpy as np
import openpyxl
import pandas as pd
from openpyxl.styles import Side, Border, Font


# 列名转数字
def column_to_num(s: str) -> int:
    assert (isinstance(s, str))
    for i in s:
        if not 64 < ord(i) < 91:
            raise ValueError('Excel Column ValueError')
    return sum([(ord(n) - 64) * 26 ** i for i, n in enumerate(list(s)[::-1])])


# 数字转列名
def num_to_column(n: int) -> str:
    assert (isinstance(n, int) and n > 0)
    num = [chr(i) for i in range(65, 91)]
    ret = []
    while n > 0:
        n, m = divmod(n - 1, len(num))
        ret.append(num[m])
    return ''.join(ret[::-1])


def read_and_merge(file=None):
    np.random.seed(24)
    print([x[0] for x in np.random.randn(10, 1).tolist()])
    data = {'name': ['Lucy'] * 10,
            'title': ['美丽的花朵'] * 6 + ['面向未来'] * 4,
            '爱好': ['篮球', '足球', '羽毛球', '乒乓球', '网球', '游泳', '瑜伽', '阅读', '骑行', '爬山'],
            'Date': pd.to_datetime(['2017-05-31 20:53:00', '2017-05-11 20:53:00', '2017-05-08 20:53:00',
                                    '2017-06-06 20:53:00', '2017-06-06 20:53:00'] * 2),
            'A': np.linspace(1, 10, 10).tolist(),
            'B': [x[0] for x in np.random.randn(10, 1).tolist()],
            'C': [x[0] for x in np.random.randn(10, 1).tolist()],
            'D': [x[0] for x in np.random.randn(10, 1).tolist()],
            'E': [x[0] for x in np.random.randn(10, 1).tolist()],
            'F': [x[0] for x in np.random.randn(10, 1).tolist()],
            'G': [x[0] for x in np.random.randn(10, 1).tolist()],
            'H': [x[0] for x in np.random.randn(10, 1).tolist()]
            }
    df_b = pd.DataFrame(data)
    print(df_b)

    # 定义一个函数来设置样式,将文本居中对齐和上下居中对齐
    def set_cell_style(value):
        style = 'text-align: center; vertical-align: middle; border: solid 1px black; '
        return style

    def set_cell_color(val):
        if val < 4:
            color = 'green'
        elif val < 8:
            color = 'yellow'
        else:
            color = 'red'
        return 'background-color: %s' % color

    def color_negative_red(val):
        """
        Takes a scalar and returns a string with
        the css property `'color: red'` for negative
        strings, black otherwise.
        """
        # print('---val:', val)
        # color_list = []
        # for val in vals:
        #     color = 'color: %s' % ('red' if val < 0 else 'black')
        #     color_list.append(color)
        # return color_list
        return 'color: %s' % ('red' if val < 0 else 'black')

    # 使用Styler对象来应用样式,同时设置文本的居中对齐和上下居中对齐
    df_c = df_b.style.map(lambda x: set_cell_style(x)).map(lambda x: set_cell_color(x), subset=['A']).map(
        lambda x: color_negative_red(x), subset=pd.IndexSlice[[1, 3, 5, 7, 9], ['B', 'C', 'D', 'G']])

    # 保存到新文件
    df_c.to_excel('temp.xlsx', index=False, engine='openpyxl')

    # 合并单元格
    wb = openpyxl.load_workbook('temp.xlsx')
    ws = wb.active
    # 第一列连续相同值的合并单元格
    # 获取第一列数据
    type_list = []
    i = 2
    while True:
        r = ws.cell(i, 1).value
        if r:
            type_list.append(r)
        else:
            break
        i += 1

    # 判断合并单元格的始末位置
    s = 0
    e = 0
    flag = type_list[0]
    for i in range(len(type_list)):
        if type_list[i] != flag:
            flag = type_list[i]
            e = i - 1
            if e >= s:
                ws.merge_cells("A" + str(s + 2) + ":A" + str(e + 2))
                s = e + 1
        if i == len(type_list) - 1:
            e = i
            ws.merge_cells("A" + str(s + 2) + ":A" + str(e + 2))

    ### 合并列
    num_rows = ws.max_row

    combine_columns = {
        ('F', 'G')
    }

    for i in range(num_rows):
        for columns in combine_columns:
            start, end = columns
            ws.merge_cells(start + str(i + 1) + ":" + end + str(i + 1))

    # 定义不同列的字体配置
    font_columns = [
        (['A', 'B', 'C'], Font(name='Times New Roman', size=9, bold=True)),
        (['D', 'E'], Font(name='Times New Roman', size=12)),
        (['F', 'G'], Font(name='宋体', size=12)),
    ]

    # 设置列的字体样式
    for labels, font in font_columns:
        for label in labels:
            for cell in ws[label]:
                cell.font = font
                # XX结尾的数据改成红色
                if cell.value and str(cell.value).endswith("XX"):
                    cell.value = cell.value[:-2]
                    cell.font = Font(name='Times New Roman', size=12, bold=True, color="FF0000", )
    # 创建一个边框样式
    border_style = Border(
        left=Side(border_style='thin', color='000000'),
        right=Side(border_style='thin', color='000000'),
        top=Side(border_style='thin', color='000000'),
        bottom=Side(border_style='thin', color='000000')
    )

    # 遍历工作表中的所有单元格并应用边框样式
    for row in ws.iter_rows():
        for cell in row:
            cell.border = border_style
    wb.save('output_excel_file.xlsx')

    try:
        os.remove('temp.xlsx')
    except FileNotFoundError:
        pass
    except Exception as e:
        pass
    return 'output_excel_file.xlsx'


if __name__ == '__main__':
    for i in range(1, 100):
        column_name = num_to_column(i)
        print(i, column_name, column_to_num(column_name))

    read_and_merge()

参考

相关推荐
丕羽2 小时前
【Pytorch】基本语法
人工智能·pytorch·python
bryant_meng2 小时前
【python】Distribution
开发语言·python·分布函数·常用分布
m0_594526303 小时前
Python批量合并多个PDF
java·python·pdf
工业互联网专业3 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
钱钱钱端3 小时前
【压力测试】如何确定系统最大并发用户数?
自动化测试·软件测试·python·职场和发展·压力测试·postman
慕卿扬3 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
Json____4 小时前
python的安装环境Miniconda(Conda 命令管理依赖配置)
开发语言·python·conda·miniconda
小袁在上班4 小时前
Python 单元测试中的 Mocking 与 Stubbing:提高测试效率的关键技术
python·单元测试·log4j
白狐欧莱雅4 小时前
使用python中的pygame简单实现飞机大战游戏
经验分享·python·游戏·pygame
阿_旭4 小时前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai