YOLOv8---seg实例分割(制作数据集,训练模型,预测结果)

YOLOv8----seg实例分割(制作数据集,训练模型,预测结果)

内容如下:【需要软件及工具:pycharm、labelme、anaconda、云主机(跑训练)】


1.制作自己的数据集

2.在yolo的预训练模型的基础上再训练自己的模型

3.训练结束后,尝试预测图片的实体分割

1.制作数据集:

下载安装labelme:

bash 复制代码
$ conda create -n labelme python=3.8 #创建一个专门做数据集的虚拟环境
$ conda activate labelme #进入此虚拟环境
#下载并安装labelme以及依赖软件包
$ conda install pyqt
$ conda install pillow
$ pip install labelme
$ conda list #查看labelme有没有安装进去
$ labelme #直接在终端输入labelme即可进入labelme


可能遇到的问题:【CondaHTTPError: HTTP 000 CONNECTION FAILED for url】

解决方法:【修改国内源】

找到.condarc文件【一般位于C盘的user,主机用户的文件夹下】

替换成:

bash 复制代码
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
show_channel_urls: true
ssl_verify: false

安装好labelme之后,就可以开始制作数据集了:

【说明一下,创建矩形就是制作detect检测数据集,创建多边形就是制作segment实体分割数据集】

【制作好一幅图之后,点击保存,会在图片的同级目录下生成对应的JSON文件】

JSON文件生成之后,想要在YOLO中使用,得先转换成TXT模式:【代码如下】

1.detect数据集JSON转TXT

python 复制代码
import json
import os
import pandas as pd
def convert(img_size, box):
    x1 = box[0]
    y1 = box[1]
    x2 = box[2]
    y2 = box[3]
    return (x1, y1, x2, y2)
def decode_json(json_floder_path, json_name,label):
    txt_name = r'' #转换后,TXT文件所在的文件夹目录
    + json_name[0:-5] + '.txt'
    txt_file = open(txt_name, 'w')
    json_path = os.path.join(json_floder_path, json_name)
    data = json.load(open(json_path, 'r'))
    img_w = data['imageWidth']
    img_h = data['imageHeight']
    for i in data['shapes']:
        if i['shape_type'] == 'rectangle':
            if (label['label'] != i['label']).all():
                new_label=pd.DataFrame(columns=['label'], data=[i['label']])
                label=label.append(new_label,ignore_index=True)
            try:
                x1 = float((i['points'][0][0])) / img_w
                y1 = float((i['points'][0][1])) / img_h
                x2 = float((i['points'][1][0])) / img_w
                y2 = float((i['points'][1][1])) / img_h
                n = label[label['label']==i['label']].index[0]
                bb = (x1, y1, x2, y2)
                bbox = convert((img_w, img_h), bb)
                txt_file.write(str(n) + " " + " ".join([str(a) for a in bbox]) + '\n')
            except IndexError:
                print(json_name[0:-5]+'的'+i['label']+"标签坐标缺失")
    return label
if __name__ == "__main__":
    json_floder_path = r''#JSON数据的文件夹
    json_names = os.listdir(json_floder_path)
    label= pd.DataFrame(columns = ['label'])
    for json_name in json_names:
        if json_name[-4:]=='json':
            print(json_name)
            label=decode_json(json_floder_path, json_name,label)

    label.to_csv('label.txt', sep='\t', index=True) 

2.segment数据集JSON转TXT

python 复制代码
import json
import os
import glob
import os.path as osp


def labelme2yolov2Seg(jsonfilePath="", resultDirPath="", classList=["类别1","类别2"]):
    """
    此函数用来将labelme软件标注好的数据集转换为yolo实体分割中使用的数据集
    :param jsonfilePath: labelme标注好的*.json文件所在文件夹
    :param resultDirPath: 转换好后的*.txt保存文件夹
    :param classList: 数据集中的类别标签
    :return:
    """
    # 0.创建保存转换结果的文件夹
    if (not os.path.exists(resultDirPath)):
        os.mkdir(resultDirPath)

    # 1.获取目录下所有的labelme标注好的Json文件,存入列表中
    jsonfileList = glob.glob(osp.join(jsonfilePath, "*.json"))
    print(jsonfileList)  # 打印文件夹下的文件名称

    # 2.遍历json文件,进行转换
    for jsonfile in jsonfileList:
        # 3. 打开json文件
        with open(jsonfile, "r") as f:
            file_in = json.load(f)
            # 4. 读取文件中记录的所有标注目标
            shapes = file_in["shapes"]
            # 5. 使用图像名称创建一个txt文件,用来保存数据
            with open(resultDirPath + "\\" + jsonfile.split("\\")[-1].replace(".json", ".txt"), "w") as file_handle:
                # 6. 遍历shapes中的每个目标的轮廓
                for shape in shapes:
                    # 7.根据json中目标的类别标签,从classList中寻找类别的ID,然后写入txt文件中
                    file_handle.writelines(str(classList.index(shape["label"])) + " ")
                    # 8. 遍历shape轮廓中的每个点,每个点要进行图像尺寸的缩放,即x/width, y/height
                    for point in shape["points"]:
                        x = point[0] / file_in["imageWidth"]  # mask轮廓中一点的X坐标
                        y = point[1] / file_in["imageHeight"]  # mask轮廓中一点的Y坐标
                        file_handle.writelines(str(x) + " " + str(y) + " ")  # 写入mask轮廓点
                    # 9.每个物体一行数据,一个物体遍历完成后需要换行
                    file_handle.writelines("\n")
            # 10.所有物体都遍历完,需要关闭文件
            file_handle.close()
        # 10.所有物体都遍历完,需要关闭文件
        f.close()
if __name__ == "__main__":
    jsonfilePath = ""  # 要转换的json文件所在目录
    resultDirPath = ""  # 要生成的txt文件夹
    labelme2yolov2Seg(jsonfilePath=jsonfilePath, resultDirPath=resultDirPath, classList=["类别1","类别2"])  # 更改为自己的类别名

转换好之后,创建一个这样的文件夹:【解释如下】

【train:训练所用的数据(包含图片,和图片所标注的数据集文件)】

【val:训练的时候,验证所用的数据,同样包含图片和类别坐标txt数据】

然后训练代码如下:【代码中的文件解释,在下面文章中紧随】

python 复制代码
from ultralytics import YOLO
model = YOLO('yolov8-seg.yaml').load('yolov8x-seg.pt')#改成自己所放的位置
model.train(data='./datasets/coco128-seg.yaml',epochs=50,imgsz=640)

yolov8-seg.yaml

yolov8x-seg.pt【yolo代码GitHub官网下载的实例分割的预训练模型,一般直接放到根目录即可】

coco128-seg.yaml【注意:calss写的时候,要和labelme中你标注的时候创建的label序号对应上】

bash 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128-seg  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/yoloProject/ultralytics-registry/ultralytics/yolo/data-of-me  # dataset root dir
train: train/images  # train images (relative to 'path') 128 images
val: val/images  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
names:
  0: 类别1 #自己起名字
  1: 类别2  

OK,run完my_train.py后,就可以得到训练的结果:

然后,可以直接拿着weight文件夹下生成的两个模型进行预测【best,last顾名思义】

预测的时候,直接命令行、python脚本都可以:

1.命令行:yolo predict model=best.pt source=图片文件或所在文件夹

2.python代码:

python 复制代码
from ultralytics import YOLO

# 读取模型,这里传入训练好的模型
model = YOLO('best.pt')

# 模型预测,save=True 的时候表示直接保存yolov8的预测结果
metrics = model.predict(['123.png'], save=True)
# 如果想自定义的处理预测结果可以这么操作,遍历每个预测结果分别的去处理
for m in metrics:
    # 获取每个boxes的结果
    box = m.boxes
    # 获取box的位置,
    xywh = box.xywh
    # 获取预测的类别
    cls = box.cls

    print(box, xywh, cls)

预测结果:【控制台会输出存放路径】

补充:如果你想把框去掉,或者把label信息去掉不显示

找到yolo的cfg配置文件,找到prediction settings,然后想要啥,想去掉啥,随你

比如:

只要框:

只识别分割,别的啥都不要:

相关推荐
Kacey Huang1 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
日日行不惧千万里5 小时前
如何用YOLOv8训练一个识别安全帽的模型?
python·yolo
Coovally AI模型快速验证14 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
红色的山茶花1 天前
YOLOv10-1.1部分代码阅读笔记-predictor.py
笔记·深度学习·yolo
AI街潜水的八角2 天前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光2 天前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角2 天前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&3 天前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天3 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机3 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集