人类语言处理nlp部分笔记——四、GPT3

参考自李宏毅课程-人类语言处理

四、GPT3

1. 介绍

GPT-3是一个language model,它的参数量相当巨大,是ELMO的2000倍。

2. GPT-3的野心

虽然GPT-3和BERT等模型一样,但是GPT-3是不需要针对特定的task做finetune的,也就是说GPT-3只需要预训练就够了。

具体来说,GPT-3定义了三种learning,第一个是"few-shot learning",就是先告诉模型要干什么,然后给几个例子,最后给模型一个题目让它做出来,第二个是"one-shot learning",就是告诉模型要干什么,然后给一个例子,最后给模型一个题目让它做出来;最后一个是"zero-shot learning",就是告诉模型要干什么,然后给模型一个题目让它做出来。这就相当于人一样了,这种learning被GPT-3的作者们称作"in-context learning"。

3. GPT-3的效果

在42个NLP任务上的平均准确率随参数量的变化如下图所示,可见随着参数量的增大,准确率是在一直上升的。

GPT-3在closed book QA上的表现如下所示,之前的QA都是给一个knowledge source,让模型从中找出答案,而所谓的closed book就是没有knowledge source的QA,就只给问题,看模型能不能够打上来。在175B参数量的情况下,用few-shot是可以超过SOTA的。

GPT-3在SuperGLUE的表现如下图所示,总结一下就是参数量越大,给的例子越多,模型的表现就越好。

GPT-3也可以用在生成任务上,下图是不同参数量下GPT-3生成的文章让人去辨别是不是机器生成时的准确率,当参数量最大时,人几乎已经无法辨别出时机器还是人写的了。

GPT-3也会做算术,如下图所示,问它"What is 17 minus 14?"这样的两位数的加减法基本都会回答正确,但是三位数及以上就不灵了。

当然,GPT-3也有不擅长的任务,比如NLI任务,GPT-3的结果就和随便猜的一样。NLI就是给两句话,让模型判断是矛盾,还是相近,还是中立。

相关推荐
车队老哥记录生活3 小时前
【MPC】模型预测控制笔记 (3):无约束输出反馈MPC
笔记·算法
写代码的小阿帆3 小时前
LDStega论文阅读笔记
论文阅读·笔记
Cai junhao3 小时前
【Qt】Qt控件
开发语言·c++·笔记·qt
LuLaLuLaLeLLLLLL3 小时前
Elastic Search 学习笔记
笔记·学习
Resurgence033 小时前
原型模式Prototype Pattern
笔记·原型模式
程序员大宝1014 小时前
如何设计三高架构
笔记
成都犀牛4 小时前
LangGraph 深度学习笔记:构建真实世界的智能代理
人工智能·pytorch·笔记·python·深度学习
sealaugh325 小时前
docker(学习笔记第一课) 使用nginx +https + wordpress
笔记·学习·docker
村头的猫5 小时前
如何通过 noindex 阻止网页被搜索引擎编入索引?
前端·经验分享·笔记·搜索引擎
Resurgence036 小时前
建造者模式Builder Pattern
笔记·建造者模式