Hadoop3:MapReduce工作流程图解

一、流程图

二、流程说明

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M

mapred-default.xml

xml 复制代码
<property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>100</value>
  <description>The total amount of buffer memory to use while sorting
  files, in megabytes.  By default, gives each merge stream 1MB, which
  should minimize seeks.</description>
</property>

三、注意点

1、对于第3步,提交信息,如果是Local本地模式,则不会提交wc.jar

2、第7步的环形缓冲区,在80%后,反向写入。
怎么理解反向写入?为什么要反向写入?

达到80%后,从尾部向头部写入,为了提高性能,这样做后,就可以同时将内存的数据写入到磁盘分区中,从头部开始写入到磁盘,从尾部写入到缓冲区,可以并发进行。当然,如果写入速度,大于写出速度,则依然会等待写出完,在进行写入。

3、第8步的分区内排序,采用的是快速排序算法,排序对象是环形缓冲区的索引排序。这样,效率更高。此时排序的数据依然在内存中。

4、第10步的分区合并,采用的是归并排序,此时,数据已经写入磁盘。

5、第12步的ReduceTask不一定需要等到所有的MapTask结束再开始。ReduceTask会主动去MapTask里拉取自己负责的分区数据,进行归并排序处理。

一个ReduceTask会生成一个结果文件,我们之前的WC案例中,没有设定ReduceTask数量,默认是1,所以,生成的结果文件就是1个

相关推荐
野曙36 分钟前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大
电商数据girl1 小时前
酒店旅游类数据采集API接口之携程数据获取地方美食品列表 获取地方美餐馆列表 景点评论
java·大数据·开发语言·python·json·旅游
OJAC近屿智能2 小时前
ChatGPT再升级!
大数据·人工智能·百度·chatgpt·近屿智能
欧先生^_^2 小时前
现在环保方面有什么新的技术动态
大数据
线条12 小时前
MapReduce Shuffle 全解析:从 Map 端到 Reduce 端的核心数据流
大数据·hadoop·mapreduce
白宇横流学长2 小时前
基于大数据的租房信息可视化系统的设计与实现【源码+文档+部署】
大数据·信息可视化
依年南台3 小时前
Spark缓存
大数据
zxfgdjfjfjflfllf3 小时前
Mapreduce初使用
大数据·wpf·mapreduce
Leo.yuan4 小时前
基于地图的数据可视化:解锁地理数据的真正价值
大数据·数据库·信息可视化·数据挖掘·数据分析
漂流瓶6666665 小时前
运行Spark程序-在shell中运行 --SparkConf 和 SparkContext
大数据·分布式·spark