Hadoop3:MapReduce工作流程图解

一、流程图

二、流程说明

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M

mapred-default.xml

xml 复制代码
<property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>100</value>
  <description>The total amount of buffer memory to use while sorting
  files, in megabytes.  By default, gives each merge stream 1MB, which
  should minimize seeks.</description>
</property>

三、注意点

1、对于第3步,提交信息,如果是Local本地模式,则不会提交wc.jar

2、第7步的环形缓冲区,在80%后,反向写入。
怎么理解反向写入?为什么要反向写入?

达到80%后,从尾部向头部写入,为了提高性能,这样做后,就可以同时将内存的数据写入到磁盘分区中,从头部开始写入到磁盘,从尾部写入到缓冲区,可以并发进行。当然,如果写入速度,大于写出速度,则依然会等待写出完,在进行写入。

3、第8步的分区内排序,采用的是快速排序算法,排序对象是环形缓冲区的索引排序。这样,效率更高。此时排序的数据依然在内存中。

4、第10步的分区合并,采用的是归并排序,此时,数据已经写入磁盘。

5、第12步的ReduceTask不一定需要等到所有的MapTask结束再开始。ReduceTask会主动去MapTask里拉取自己负责的分区数据,进行归并排序处理。

一个ReduceTask会生成一个结果文件,我们之前的WC案例中,没有设定ReduceTask数量,默认是1,所以,生成的结果文件就是1个

相关推荐
GIS数据转换器6 分钟前
2025无人机在农业生态中的应用实践
大数据·网络·人工智能·安全·无人机
武子康17 分钟前
大数据-132 Flink SQL 实战入门 | 3 分钟跑通 Table API + SQL 含 toChangelogStream 新写法
大数据·后端·flink
Lion Long39 分钟前
PB级数据洪流下的抉择:从大数据架构师视角,深度解析时序数据库选型与性能优化(聚焦Apache IoTDB)
大数据·性能优化·apache·时序数据库·iotdb
Lx3521 小时前
Flink背压机制:原理与调优策略
大数据
Lx3521 小时前
Flink容错机制:Checkpoint和Savepoint深入解析
大数据
helloworddm2 小时前
Orleans 流系统握手机制流程图
流程图
QQ5416451212 小时前
【小增长电商软件分享】微信私域淘宝电商补单/做基础销量:如何有效控制粉丝错货、复购、订单插旗及客服转账返款等常见痛点|粉丝订单管理|电商鱼塘运营方案
大数据·电商私域粉丝管理·电商私域运营系统解决方案·粉丝订单关系系统
字节跳动数据平台3 小时前
多模态数据湖技术深化,Data Agent新能力发布!“认知”将决定企业上限
大数据
字节跳动数据平台4 小时前
得物×火山引擎:Data Agent驱动财务管理智能升级
大数据
想ai抽4 小时前
Spark的shuffle类型与对比
大数据·数据仓库·spark