Hadoop3:MapReduce工作流程图解

一、流程图

二、流程说明

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M

mapred-default.xml

xml 复制代码
<property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>100</value>
  <description>The total amount of buffer memory to use while sorting
  files, in megabytes.  By default, gives each merge stream 1MB, which
  should minimize seeks.</description>
</property>

三、注意点

1、对于第3步,提交信息,如果是Local本地模式,则不会提交wc.jar

2、第7步的环形缓冲区,在80%后,反向写入。
怎么理解反向写入?为什么要反向写入?

达到80%后,从尾部向头部写入,为了提高性能,这样做后,就可以同时将内存的数据写入到磁盘分区中,从头部开始写入到磁盘,从尾部写入到缓冲区,可以并发进行。当然,如果写入速度,大于写出速度,则依然会等待写出完,在进行写入。

3、第8步的分区内排序,采用的是快速排序算法,排序对象是环形缓冲区的索引排序。这样,效率更高。此时排序的数据依然在内存中。

4、第10步的分区合并,采用的是归并排序,此时,数据已经写入磁盘。

5、第12步的ReduceTask不一定需要等到所有的MapTask结束再开始。ReduceTask会主动去MapTask里拉取自己负责的分区数据,进行归并排序处理。

一个ReduceTask会生成一个结果文件,我们之前的WC案例中,没有设定ReduceTask数量,默认是1,所以,生成的结果文件就是1个

相关推荐
TM1Club1 天前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang133830890751 天前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_180079052471 天前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓1 天前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒1 天前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理
独自归家的兔1 天前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
海域云-罗鹏1 天前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
策知道1 天前
依托政府工作报告准备省考【经验贴】
大数据·数据库·人工智能·搜索引擎·政务
Henry-SAP1 天前
SAP(ERP) 组织结构业务视角解析
大数据·人工智能·sap·erp·sap pp
TracyCoder1231 天前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎