Hadoop3:MapReduce工作流程图解

一、流程图

二、流程说明

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M

mapred-default.xml

xml 复制代码
<property>
  <name>mapreduce.task.io.sort.mb</name>
  <value>100</value>
  <description>The total amount of buffer memory to use while sorting
  files, in megabytes.  By default, gives each merge stream 1MB, which
  should minimize seeks.</description>
</property>

三、注意点

1、对于第3步,提交信息,如果是Local本地模式,则不会提交wc.jar

2、第7步的环形缓冲区,在80%后,反向写入。
怎么理解反向写入?为什么要反向写入?

达到80%后,从尾部向头部写入,为了提高性能,这样做后,就可以同时将内存的数据写入到磁盘分区中,从头部开始写入到磁盘,从尾部写入到缓冲区,可以并发进行。当然,如果写入速度,大于写出速度,则依然会等待写出完,在进行写入。

3、第8步的分区内排序,采用的是快速排序算法,排序对象是环形缓冲区的索引排序。这样,效率更高。此时排序的数据依然在内存中。

4、第10步的分区合并,采用的是归并排序,此时,数据已经写入磁盘。

5、第12步的ReduceTask不一定需要等到所有的MapTask结束再开始。ReduceTask会主动去MapTask里拉取自己负责的分区数据,进行归并排序处理。

一个ReduceTask会生成一个结果文件,我们之前的WC案例中,没有设定ReduceTask数量,默认是1,所以,生成的结果文件就是1个

相关推荐
计算机毕设定制辅导-无忧学长1 小时前
TDengine 集群高可用方案设计(一)
大数据·时序数据库·tdengine
BOB-wangbaohai3 小时前
Flowable7.x学习笔记(十三)查看部署流程图
笔记·学习·流程图
技术项目引流4 小时前
elasticsearch查询中的特殊字符影响分析
大数据·elasticsearch·搜索引擎
EasyDSS4 小时前
视频监控从安装到优化的技术指南,视频汇聚系统EasyCVR智能安防系统构建之道
大数据·网络·网络协议·音视频
lilye665 小时前
精益数据分析(20/126):解析经典数据分析框架,助力创业增长
大数据·人工智能·数据分析
苏小夕夕5 小时前
spark-streaming(二)
大数据·spark·kafka
珈和info5 小时前
珈和科技助力“农险提效200%”!“遥感+”技术创新融合省级示范项目荣登《湖北卫视》!
大数据·科技·无人机·智慧农业
盈达科技5 小时前
盈达科技:登顶GEO优化全球制高点,以AICC定义AI时代内容智能优化新标杆
大数据·人工智能
电商数据girl7 小时前
产品经理对于电商接口的梳理||电商接口文档梳理与接入
大数据·数据库·python·自动化·产品经理