数据挖掘--认识数据

数据挖掘--引论

数据挖掘--认识数据

数据挖掘--数据预处理

数据挖掘--数据仓库与联机分析处理

数据挖掘--挖掘频繁模式、关联和相关性:基本概念和方法

数据挖掘--分类

数据挖掘--聚类分析:基本概念和方法


数据对象与属性类型

  • 属性:是一个数据字段,表示数据对象的一个特征
  • 标称属性:值是一些符号或事物的名称
  • 二元属性:布尔属性(1或0)
  • 序数属性:用有序字母或者数字来表示不同等级1-大,2-中,3-小
  • 数值属性:区间标度属性(温度)、比率标度
  • 离散属性与连续属性:具有有限或无线可能个数

数据的基本统计描述

中列数:(max+min)/2

盒图

四分位数极差:IQR=Q3-Q1

离群点:大于Q3有1.5倍IQR,小于Q1有1.5倍IQR

最大,最小(不超过1.5倍IQR)(没有的话以最大观察值为准)

中位数

分位数图

分位数-分位数图

区别

因可以说分位数和分位数图是相关的概念,但并不完全相同。分位数是描述数据集中某个位置的值,而分位数图则是以图形方式展示了数据集的整体分布情况。

度量数据的相似性和相异性

数据矩阵与相异性矩阵

数据矩阵:两张相同长宽的表来实现对象-属性

相异性矩阵:存放n个对象两两之间的邻近度(任意两个之间的距离)

标称属性的邻近性度量

d(i,j)=(p-m)/p

p:总属性个数

m:i,j相同的属性个数

二元属性的邻近性度量

列出列联表

算出q,r,s,t

对称二元相异性:

非对称二元相异性(正匹配比度匹配有意义的多,因此负匹配数t忽略不计):

数值属性的相异性:闵可夫斯基距离

欧式距离、曼哈顿距离(差值相加)、上确界距离(max|xi1-xi2|)(差值最大)

闵可夫斯基距离:是对欧几里得距离的推广,可以理解为不同维度考察下的距离

序数属性的邻近度量

混合类型属性的相异性

混合类型相异度计算的思想:按不同类型的属性(如数值型,二元变量,名义变量等),根据各自类型的计算方法计算之后再加权求和。

关于指示符(即 权重):指示符为0有两种情况

余弦相似性

相关推荐
云天徽上2 小时前
【机器学习】Kaggle案例之Rossmann连锁药店销售额预测:时间序列与机器学习完美融合的实战指南
机器学习·数据挖掘·kaggle
Ethan Hunt丶7 小时前
运动想象脑电的基本原理与分类方法
人工智能·分类·数据挖掘·脑机接口
Yuer202510 小时前
为什么要用rust做算子执行引擎
人工智能·算法·数据挖掘·rust
山海青风11 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 8 基础模型之分类模型
人工智能·分类·数据挖掘
心无旁骛~12 小时前
华为 ModelEngine Nexent低代码平台单智能体评测:数据分析智能体 —— 零代码实现数据洞察与可视化闭环
低代码·数据挖掘·数据分析
算法与编程之美12 小时前
探索不同的损失函数对分类精度的影响
人工智能·算法·机器学习·分类·数据挖掘
AI浩12 小时前
RDD4D:基于4D注意力引导的道路损伤检测与分类
人工智能·分类·数据挖掘
LeonIter15 小时前
用回归分析为短剧APP“号脉”:我们如何找到留存的关键驱动力与产品迭代优先级?
人工智能·数据挖掘·回归
山海青风1 天前
人工智能基础与应用 - 数据处理、建模与预测流程 7 基础模型之回归模型
人工智能·数据挖掘·回归
熬夜敲代码的小N1 天前
AI文本分类实战:从数据预处理到模型部署全流程解析
人工智能·分类·数据挖掘