37、Flink 的 WindowAssigner之会话窗口示例

1、处理时间

无需设置水位线和时间间隔。

bash 复制代码
input.keyBy(e -> e)
                .window(ProcessingTimeSessionWindows.withGap(Time.minutes(10)))
                .apply(new WindowFunction<String, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<String> iterable, Collector<String> collector) throws Exception {
                        for (String string : iterable) {
                            collector.collect(string);
                        }
                    }
                })
                .print();

2、事件时间

需设置水位线和时间间隔。

bash 复制代码
// 事件时间需要设置水位线策略和时间戳
        SingleOutputStreamOperator<Tuple2<String, Long>> map = input.map(new MapFunction<String, Tuple2<String, Long>>() {
            @Override
            public Tuple2<String, Long> map(String input) throws Exception {
                String[] fields = input.split(",");
                return new Tuple2<>(fields[0], Long.parseLong(fields[1]));
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Long>> watermarks = map.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(0))
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple2<String, Long> input, long l) {
                        return input.f1;
                    }
                }));

        // 设置了固定间隔的 event-time 会话窗口
        watermarks.keyBy(e -> e.f0)
                .window(EventTimeSessionWindows.withGap(Time.minutes(10)))
                .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<Tuple2<String, Long>> iterable, Collector<String> collector) throws Exception {
                        for (Tuple2<String, Long> stringLongTuple2 : iterable) {
                            collector.collect(stringLongTuple2.f0);
                        }
                    }
                })
                .print();

3、固定间隔和动态间隔

bash 复制代码
EventTimeSessionWindows.withGap(Time.minutes(10));

EventTimeSessionWindows.withDynamicGap(new SessionWindowTimeGapExtractor<Tuple2<String, Long>>() {
                    @Override
                    public long extract(Tuple2<String, Long> element) {
                        return element.f1 + 2000L;
                    }
                });

4、完整代码示例

bash 复制代码
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SessionWindowTimeGapExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.time.Duration;

public class _04_WindowAssignerSession {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> input = env.socketTextStream("localhost", 8888);

        // 测试时限制了分区数,生产中需要设置空闲数据源
        env.setParallelism(2);

        // 事件时间需要设置水位线策略和时间戳
        SingleOutputStreamOperator<Tuple2<String, Long>> map = input.map(new MapFunction<String, Tuple2<String, Long>>() {
            @Override
            public Tuple2<String, Long> map(String input) throws Exception {
                String[] fields = input.split(",");
                return new Tuple2<>(fields[0], Long.parseLong(fields[1]));
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Long>> watermarks = map.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(0))
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple2<String, Long> input, long l) {
                        return input.f1;
                    }
                }));

        // 设置了固定间隔的 event-time 会话窗口
        watermarks.keyBy(e -> e.f0)
                .window(EventTimeSessionWindows.withGap(Time.minutes(10)))
                .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<Tuple2<String, Long>> iterable, Collector<String> collector) throws Exception {
                        for (Tuple2<String, Long> stringLongTuple2 : iterable) {
                            collector.collect(stringLongTuple2.f0);
                        }
                    }
                })
                .print();

        // 设置了动态间隔的 event-time 会话窗口
        watermarks.keyBy(e -> e.f0)
                .window(EventTimeSessionWindows.withDynamicGap(new SessionWindowTimeGapExtractor<Tuple2<String, Long>>() {
                    @Override
                    public long extract(Tuple2<String, Long> element) {
                        return element.f1 + 2000L;
                    }
                }))
                .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<Tuple2<String, Long>> iterable, Collector<String> collector) throws Exception {
                        for (Tuple2<String, Long> stringLongTuple2 : iterable) {
                            collector.collect(stringLongTuple2.f0);
                        }
                    }
                })
                .print();

        // 设置了固定间隔的 processing-time session 窗口
        input.keyBy(e -> e)
                .window(ProcessingTimeSessionWindows.withGap(Time.minutes(10)))
                .apply(new WindowFunction<String, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<String> iterable, Collector<String> collector) throws Exception {
                        for (String string : iterable) {
                            collector.collect(string);
                        }
                    }
                })
                .print();

        // 设置了动态间隔的 processing-time 会话窗口
        input.keyBy(e -> e)
                .window(ProcessingTimeSessionWindows.withDynamicGap(new SessionWindowTimeGapExtractor<String>() {
                    @Override
                    public long extract(String s) {
                        return System.currentTimeMillis() / 1000;
                    }
                }))
                .apply(new WindowFunction<String, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<String> iterable, Collector<String> collector) throws Exception {
                        for (String string : iterable) {
                            collector.collect(string);
                        }
                    }
                })
                .print();

        env.execute();
    }
}
相关推荐
试着2 分钟前
【投资学习】腾讯控股(0700.HK)
大数据·人工智能·业界资讯·腾讯
合合技术团队8 分钟前
论文解读-潜在思维链推理的全面综述
大数据·人工智能·深度学习·大模型
数据智研10 分钟前
【数据分享】浙江统计年鉴(1984-2024)
大数据·人工智能
数智研发说13 分钟前
智汇电器携手鼎捷PLM:从“制造”迈向“智造”,构建高效协同研发新范式
大数据·人工智能·设计模式·重构·制造·设计规范
Elastic 中国社区官方博客37 分钟前
Elastic 与 Accenture 在 GenAI 数据准备方面的合作
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·aws
五度易链-区域产业数字化管理平台1 小时前
数据要素化落地实战:从120TB数据集到AI中台,技术如何驱动价值闭环
大数据
minhuan1 小时前
大模型应用:大模型 MapReduce 全解析:核心概念、中文语料示例实现.12
大数据·mapreduce·传统mapreduce·分布式mapreduce
TDengine (老段)1 小时前
TDengine 统计函数 VARIANCE 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Hello.Reader1 小时前
Flink SQL 从本地安装到跑通第一条流式 SQL
大数据·sql·flink
武子康1 小时前
大数据-173 Elasticsearch 映射与文档增删改查实战(基于 7.x/8.x)JSON
大数据·后端·elasticsearch