GAN相关知识

GAN训练tricks

  • generator的最后一层一般使用tanh激活函数,这样可以使训练更加稳定。但是我在实际用的时候,使用sigmoid和tanh的效果是差不多的;
  • 需要注意:discriminator的最后一层的输出的激活函数选择tanh,会导致cuda trigger问题,因此,一般来说,discriminator会选择sigmoid函数作为激活函数
  • 在实际训练的时候,G的loss在不断地下降,而D的loss在上升,这不是说网络性能不好,是正常的,只要两者loss最后收敛到一个比较稳定的值附近就可以。
  • G的学习率通常来说比D的学习率大一个数量级就会好很多。

PatchGAN (FCN)

当生成的图片过大时,可能生成的图片中只有局部区域存在伪影,而其余部分生成质量很好,此时若让判别器对整张图片进行判断,那么一个单一的数值可能无法良好地描述这张图片的质量。 PatchGAN 把一张完整的待鉴定图片利用滑动窗口裁剪成 70x70 大小的小图片。接着将这些图片依次输入判别器进行鉴定。最后将判别器对多张小图的评分求和,作为最终评分。

我的看法:这种结构和 FCN 全卷积网络 Fully Convolutional Network 不谋而合,若在 FCN 感受野达到 70x70 的那一层进行均值池化,则其效果与 patchGAN 是类似的,甚至用 FCN 更好。

BN为什么使用mini-batch?

主要是由于目前主流的梯度更新方式是mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

为什么BN层一般用在线性层和卷积层后面,而不是放在非线性单元后

因为非线性单元的输出分布形状会在训练过程中变化,归一化无法消除它的方差偏移,相反的,全连接和卷积层的输出一般是一个对称,非稀疏的一个分布,更加类似高斯分布,对他们进行归一化会产生更加稳定的分布。

相关推荐
别惹CC11 分钟前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei2 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴7 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20258 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR9 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散139 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8249 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945199 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火10 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴11 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习