代码杂谈 之 pyspark如何做相似度计算

在 PySpark 中,计算 DataFrame 两列向量的差可以通过使用 UDF(用户自定义函数)和 Vector 类型完成。这里有一个示例,展示了如何使用 PySpark 的

  • pyspark.ml.linalg.Vectors
  • pyspark.sql.functions.udf

来实现这一功能:

首先,确保你已经安装了 PySpark 并且正确设置了 SparkSession。接下来,你可以按照以下步骤操作:

  1. 导入必要的模块。
  2. 创建一个简单的 DataFrame 示例,其中包含两列向量。
  3. 定义一个计算向量差的函数。
  4. 将此函数转换为 UDF。
  5. 使用 UDF 在 DataFrame 上添加一列来存储向量差。
python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, FloatType
from pyspark.ml.linalg import Vectors

# 创建 SparkSession
spark = SparkSession.builder \
    .appName("Vector Difference in PySpark") \
    .getOrCreate()

# 创建示例 DataFrame
data = [(Vectors.dense([1.0, 2.0]), Vectors.dense([4.0, 6.0])),
        (Vectors.dense([2.0, 3.0]), Vectors.dense([5.0, 7.0]))]
df = spark.createDataFrame(data, ["vectorA", "vectorB"])

# 定义计算向量差的函数(余弦距离/欧几里得距离)
def cos_sim(a,b):
    return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))

def euclidean_distance(v1, v2):
    return float(np.linalg.norm(np.array(v1) - np.array(v2)))

cos_sim_udf = F.udf(cos_sim,FloatType())

# 在 DataFrame 上使用 UDF 添加新列
tmp_df = tmp_df.withColumn("cos_sim", cos_sim_udf('vectorA','vectorB'))
# 打印结果
df.show()
相关推荐
fmdpenny14 分钟前
Vue3初学之商品的增,删,改功能
开发语言·javascript·vue.js
通信.萌新21 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu26 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing29 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
weixin_3077791329 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
等一场春雨1 小时前
Java设计模式 十四 行为型模式 (Behavioral Patterns)
java·开发语言·设计模式
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
萧若岚1 小时前
Elixir语言的Web开发
开发语言·后端·golang
wave_sky1 小时前
解决使用code命令时的bash: code: command not found问题
开发语言·bash
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask