代码杂谈 之 pyspark如何做相似度计算

在 PySpark 中,计算 DataFrame 两列向量的差可以通过使用 UDF(用户自定义函数)和 Vector 类型完成。这里有一个示例,展示了如何使用 PySpark 的

  • pyspark.ml.linalg.Vectors
  • pyspark.sql.functions.udf

来实现这一功能:

首先,确保你已经安装了 PySpark 并且正确设置了 SparkSession。接下来,你可以按照以下步骤操作:

  1. 导入必要的模块。
  2. 创建一个简单的 DataFrame 示例,其中包含两列向量。
  3. 定义一个计算向量差的函数。
  4. 将此函数转换为 UDF。
  5. 使用 UDF 在 DataFrame 上添加一列来存储向量差。
python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, FloatType
from pyspark.ml.linalg import Vectors

# 创建 SparkSession
spark = SparkSession.builder \
    .appName("Vector Difference in PySpark") \
    .getOrCreate()

# 创建示例 DataFrame
data = [(Vectors.dense([1.0, 2.0]), Vectors.dense([4.0, 6.0])),
        (Vectors.dense([2.0, 3.0]), Vectors.dense([5.0, 7.0]))]
df = spark.createDataFrame(data, ["vectorA", "vectorB"])

# 定义计算向量差的函数(余弦距离/欧几里得距离)
def cos_sim(a,b):
    return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))

def euclidean_distance(v1, v2):
    return float(np.linalg.norm(np.array(v1) - np.array(v2)))

cos_sim_udf = F.udf(cos_sim,FloatType())

# 在 DataFrame 上使用 UDF 添加新列
tmp_df = tmp_df.withColumn("cos_sim", cos_sim_udf('vectorA','vectorB'))
# 打印结果
df.show()
相关推荐
Coding小公仔1 小时前
C++ bitset 模板类
开发语言·c++
小赖同学啊2 小时前
物联网数据安全区块链服务
开发语言·python·区块链
shimly1234562 小时前
bash 脚本比较 100 个程序运行时间,精确到毫秒,脚本
开发语言·chrome·bash
码荼2 小时前
学习开发之hashmap
java·python·学习·哈希算法·个人开发·小白学开发·不花钱不花时间crud
IT_10242 小时前
Spring Boot项目开发实战销售管理系统——数据库设计!
java·开发语言·数据库·spring boot·后端·oracle
new_zhou3 小时前
Windows qt打包编译好的程序
开发语言·windows·qt·打包程序
ye903 小时前
银河麒麟V10服务器版 + openGuass + JDK +Tomcat
java·开发语言·tomcat
武昌库里写JAVA3 小时前
Oracle如何使用序列 Oracle序列使用教程
java·开发语言·spring boot·学习·课程设计
小陈phd3 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习