代码杂谈 之 pyspark如何做相似度计算

在 PySpark 中,计算 DataFrame 两列向量的差可以通过使用 UDF(用户自定义函数)和 Vector 类型完成。这里有一个示例,展示了如何使用 PySpark 的

  • pyspark.ml.linalg.Vectors
  • pyspark.sql.functions.udf

来实现这一功能:

首先,确保你已经安装了 PySpark 并且正确设置了 SparkSession。接下来,你可以按照以下步骤操作:

  1. 导入必要的模块。
  2. 创建一个简单的 DataFrame 示例,其中包含两列向量。
  3. 定义一个计算向量差的函数。
  4. 将此函数转换为 UDF。
  5. 使用 UDF 在 DataFrame 上添加一列来存储向量差。
python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, FloatType
from pyspark.ml.linalg import Vectors

# 创建 SparkSession
spark = SparkSession.builder \
    .appName("Vector Difference in PySpark") \
    .getOrCreate()

# 创建示例 DataFrame
data = [(Vectors.dense([1.0, 2.0]), Vectors.dense([4.0, 6.0])),
        (Vectors.dense([2.0, 3.0]), Vectors.dense([5.0, 7.0]))]
df = spark.createDataFrame(data, ["vectorA", "vectorB"])

# 定义计算向量差的函数(余弦距离/欧几里得距离)
def cos_sim(a,b):
    return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))

def euclidean_distance(v1, v2):
    return float(np.linalg.norm(np.array(v1) - np.array(v2)))

cos_sim_udf = F.udf(cos_sim,FloatType())

# 在 DataFrame 上使用 UDF 添加新列
tmp_df = tmp_df.withColumn("cos_sim", cos_sim_udf('vectorA','vectorB'))
# 打印结果
df.show()
相关推荐
weixin_4573402116 小时前
旋转OBB数据集标注查看器
图像处理·人工智能·python·yolo·目标检测·数据集·旋转
洛_尘16 小时前
JAVA第十一学:认识异常
java·开发语言
nvd1116 小时前
LLM 对话记忆功能实现深度解析
python
电饭叔16 小时前
Luhn算法初介绍
python
毕设源码-邱学长16 小时前
【开题答辩全过程】以 基于JavaScript的图书销售网站为例,包含答辩的问题和答案
开发语言·javascript·ecmascript
badmonster016 小时前
实时代码库索引:用 CocoIndex 构建智能代码搜索的终极方案
python·rust
晓山清16 小时前
Meeting Summarizer Using Natural Language Processing论文理解
人工智能·python·nlp·摘要生成
老王熬夜敲代码16 小时前
泛型编程的差异抽象思想
开发语言·c++·笔记
zqy022716 小时前
python安装与环境配置
开发语言·python