【Python】【matLab】模拟退火算法求二元高次函数最小值

一、目标函数

求二元高次函数的最小值。目标函数选择:

用于测试算法的简单的目标函数:

二、Python代码实现

python 复制代码
import numpy as np


# 目标函数(2变量)
def objective_function(x):
    return x[0] ** 2 + 2 * x[0] - 15 + 4 * 4 * 2 * x[1] + 4 * x[1] ** 2
    # 测试:return x[0] ** 2 + x[1] ** 2


# 模拟退火
def simulated_annealing(objective_func,  # 目标函数
                        initial_solution=np.array([0, 0]),  # 初始解
                        temperature=100,  # 初始温度
                        min_temperature=0.1,  # 最小温度值
                        cooling_rate=0.90,  # 冷却率(乘法系数)
                        iter_max=100,  # 最大迭代次数
                        seed=0  # 随机种子
                        ):
    np.random.seed(seed)
    current_solution = initial_solution
    best_solution = current_solution

    while temperature > min_temperature:
        for j in range(iter_max):
            # 生成新的解
            new_solution = current_solution + np.random.uniform(-1, 1, len(current_solution))

            # 计算新解与当前解之间的目标函数值差异
            current_cost = objective_func(current_solution)
            new_cost = objective_func(new_solution)
            cost_diff = new_cost - current_cost

            # 判断是否接受新解
            if cost_diff < 0 or np.exp(-cost_diff / temperature) > np.random.random():
                current_solution = new_solution

            # 更新最优解
            if objective_func(current_solution) < objective_func(best_solution):
                best_solution = current_solution

        # 降低温度
        temperature *= cooling_rate

    return best_solution


# 调用退火算法求解最小值
best_solution = simulated_annealing(objective_function)

print(f"函数最小值: {objective_function(best_solution)} 自变量取值:{best_solution}")

代码参考博客:利用Python 实现 模拟退火算法

三、程序输出

测试函数输出:

目标函数输出:

四、MatLab验证程序

参考博客:MATLAB求解二元(多元)函数极值

先定义目标函数(位于fun2_3.m中):

matlab 复制代码
function f = fun2_3(x)
f = x(1) ^ 2 + 2 * x(1) - 15 + 32 * x(2) + 4 * x(2) ^ 2;

模拟退火算法求极值:

matlab 复制代码
clc, clear
[x, y]=meshgrid(-10:0.3:10,-10:0.3:10);
z = x.^2 + 2 * x -15 + 32 * y + 4 * y.^2;
figure(1)
surf(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');

figure(2)
contour(x,y,z)
xlabel('X');
ylabel('Y');
grid on;

x0=[-3,-3];
% [x,fmin]=fminsearch(@fun2_3,x0)
[x,fmin] = fminunc(@fun2_3,x0)

程序输出:

可见,两种方法的求解结果基本相同。

相关推荐
小熊出擊1 小时前
【pytest】finalizer 执行顺序:FILO 原则
python·测试工具·单元测试·pytest
tao3556671 小时前
【Python刷力扣hot100】49. Group Anagrams
开发语言·python·leetcode
韩立学长1 小时前
【开题答辩实录分享】以《基于Python的新能源汽车管理系统的设计与实现》为例进行答辩实录分享
python·新能源汽车
Pocker_Spades_A2 小时前
中秋与代码共舞:用Python、JS、Java打造你的专属中秋技术盛宴
python
梁萌2 小时前
自动化测试框架playwright使用
自动化测试·python·ui自动化·playwright
Python×CATIA工业智造2 小时前
Python回调函数中携带额外状态的完整指南:从基础到高级实践
python·pycharm
害恶细君2 小时前
【超详细】使用conda配置python的开发环境
开发语言·python·jupyter·pycharm·conda·ipython
java1234_小锋2 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 变量(Variable)的定义与操作
python·深度学习·tensorflow·tensorflow2
我星期八休息3 小时前
C++异常处理全面解析:从基础到应用
java·开发语言·c++·人工智能·python·架构
2401_841495644 小时前
【数据结构】汉诺塔问题
java·数据结构·c++·python·算法·递归·