【Python】【matLab】模拟退火算法求二元高次函数最小值

一、目标函数

求二元高次函数的最小值。目标函数选择:

用于测试算法的简单的目标函数:

二、Python代码实现

python 复制代码
import numpy as np


# 目标函数(2变量)
def objective_function(x):
    return x[0] ** 2 + 2 * x[0] - 15 + 4 * 4 * 2 * x[1] + 4 * x[1] ** 2
    # 测试:return x[0] ** 2 + x[1] ** 2


# 模拟退火
def simulated_annealing(objective_func,  # 目标函数
                        initial_solution=np.array([0, 0]),  # 初始解
                        temperature=100,  # 初始温度
                        min_temperature=0.1,  # 最小温度值
                        cooling_rate=0.90,  # 冷却率(乘法系数)
                        iter_max=100,  # 最大迭代次数
                        seed=0  # 随机种子
                        ):
    np.random.seed(seed)
    current_solution = initial_solution
    best_solution = current_solution

    while temperature > min_temperature:
        for j in range(iter_max):
            # 生成新的解
            new_solution = current_solution + np.random.uniform(-1, 1, len(current_solution))

            # 计算新解与当前解之间的目标函数值差异
            current_cost = objective_func(current_solution)
            new_cost = objective_func(new_solution)
            cost_diff = new_cost - current_cost

            # 判断是否接受新解
            if cost_diff < 0 or np.exp(-cost_diff / temperature) > np.random.random():
                current_solution = new_solution

            # 更新最优解
            if objective_func(current_solution) < objective_func(best_solution):
                best_solution = current_solution

        # 降低温度
        temperature *= cooling_rate

    return best_solution


# 调用退火算法求解最小值
best_solution = simulated_annealing(objective_function)

print(f"函数最小值: {objective_function(best_solution)} 自变量取值:{best_solution}")

代码参考博客:利用Python 实现 模拟退火算法

三、程序输出

测试函数输出:

目标函数输出:

四、MatLab验证程序

参考博客:MATLAB求解二元(多元)函数极值

先定义目标函数(位于fun2_3.m中):

matlab 复制代码
function f = fun2_3(x)
f = x(1) ^ 2 + 2 * x(1) - 15 + 32 * x(2) + 4 * x(2) ^ 2;

模拟退火算法求极值:

matlab 复制代码
clc, clear
[x, y]=meshgrid(-10:0.3:10,-10:0.3:10);
z = x.^2 + 2 * x -15 + 32 * y + 4 * y.^2;
figure(1)
surf(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');

figure(2)
contour(x,y,z)
xlabel('X');
ylabel('Y');
grid on;

x0=[-3,-3];
% [x,fmin]=fminsearch(@fun2_3,x0)
[x,fmin] = fminunc(@fun2_3,x0)

程序输出:

可见,两种方法的求解结果基本相同。

相关推荐
闲人编程2 分钟前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
痴儿哈哈11 分钟前
自动化机器学习(AutoML)库TPOT使用指南
jvm·数据库·python
花酒锄作田25 分钟前
SQLAlchemy中使用UPSERT
python·sqlalchemy
SoleMotive.26 分钟前
一个准程序员的健身日志:用算法调试我的增肌计划
python·程序员·健身·职业转型
亓才孓34 分钟前
[Properties]写配置文件前,必须初始化Properties(引用变量没执行有效对象,调用方法会报空指针错误)
开发语言·python
Bruk.Liu39 分钟前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
大江东去浪淘尽千古风流人物1 小时前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
Swift社区1 小时前
Gunicorn 与 Uvicorn 部署 Python 后端详解
开发语言·python·gunicorn
Coinsheep1 小时前
SSTI-flask靶场搭建及通关
python·flask·ssti
IT实战课堂小元酱1 小时前
大数据深度学习|计算机毕设项目|计算机毕设答辩|flask露天矿爆破效果分析系统开发及应用
人工智能·python·flask