【Python】【matLab】模拟退火算法求二元高次函数最小值

一、目标函数

求二元高次函数的最小值。目标函数选择:

用于测试算法的简单的目标函数:

二、Python代码实现

python 复制代码
import numpy as np


# 目标函数(2变量)
def objective_function(x):
    return x[0] ** 2 + 2 * x[0] - 15 + 4 * 4 * 2 * x[1] + 4 * x[1] ** 2
    # 测试:return x[0] ** 2 + x[1] ** 2


# 模拟退火
def simulated_annealing(objective_func,  # 目标函数
                        initial_solution=np.array([0, 0]),  # 初始解
                        temperature=100,  # 初始温度
                        min_temperature=0.1,  # 最小温度值
                        cooling_rate=0.90,  # 冷却率(乘法系数)
                        iter_max=100,  # 最大迭代次数
                        seed=0  # 随机种子
                        ):
    np.random.seed(seed)
    current_solution = initial_solution
    best_solution = current_solution

    while temperature > min_temperature:
        for j in range(iter_max):
            # 生成新的解
            new_solution = current_solution + np.random.uniform(-1, 1, len(current_solution))

            # 计算新解与当前解之间的目标函数值差异
            current_cost = objective_func(current_solution)
            new_cost = objective_func(new_solution)
            cost_diff = new_cost - current_cost

            # 判断是否接受新解
            if cost_diff < 0 or np.exp(-cost_diff / temperature) > np.random.random():
                current_solution = new_solution

            # 更新最优解
            if objective_func(current_solution) < objective_func(best_solution):
                best_solution = current_solution

        # 降低温度
        temperature *= cooling_rate

    return best_solution


# 调用退火算法求解最小值
best_solution = simulated_annealing(objective_function)

print(f"函数最小值: {objective_function(best_solution)} 自变量取值:{best_solution}")

代码参考博客:利用Python 实现 模拟退火算法

三、程序输出

测试函数输出:

目标函数输出:

四、MatLab验证程序

参考博客:MATLAB求解二元(多元)函数极值

先定义目标函数(位于fun2_3.m中):

matlab 复制代码
function f = fun2_3(x)
f = x(1) ^ 2 + 2 * x(1) - 15 + 32 * x(2) + 4 * x(2) ^ 2;

模拟退火算法求极值:

matlab 复制代码
clc, clear
[x, y]=meshgrid(-10:0.3:10,-10:0.3:10);
z = x.^2 + 2 * x -15 + 32 * y + 4 * y.^2;
figure(1)
surf(x,y,z)
xlabel('X');
ylabel('Y');
zlabel('Z');

figure(2)
contour(x,y,z)
xlabel('X');
ylabel('Y');
grid on;

x0=[-3,-3];
% [x,fmin]=fminsearch(@fun2_3,x0)
[x,fmin] = fminunc(@fun2_3,x0)

程序输出:

可见,两种方法的求解结果基本相同。

相关推荐
何大春几秒前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
在下不上天9 分钟前
Flume日志采集系统的部署,实现flume负载均衡,flume故障恢复
大数据·开发语言·python
SEVEN-YEARS12 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
EterNity_TiMe_17 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
Suyuoa28 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo
好看资源平台2 小时前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
进击的六角龙2 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂2 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
湫ccc2 小时前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai