OpenCV如何判断一张图片是否有过高的明暗变化

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

前言

判断一张图片是否有过高的明暗变化,可以通过分析图像的亮度分布一致性来实现。一种常见的做法是计算图像的亮度标准差(Standard Deviation)。标准差越大,表示图像中的亮度差异越大,即明暗变化可能较为剧烈。

代码实现

在C++中,你可以直接使用OpenCV库与C++标准库或Boost等数学库结合来计算图像的亮度标准差。虽然OpenCV的cv::Mat类本身不直接提供标准差计算函数,但你可以利用OpenCV的数据结构配合C++ STL中的算法来实现这一功能。以下是一个使用C++和OpenCV计算图像亮度标准差的例子:

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

/**
 * 计算灰度图像的亮度标准差
 * @param imgGray 输入的灰度图像,必须是单通道的8位无符号整型图像。
 * @return 返回图像亮度的标准差。
 * 
 * 该函数接收一个灰度图像作为输入,首先验证图像的类型是否满足要求,
 * 然后使用OpenCV的meanStdDev函数计算图像亮度的均值和标准差。
 * 最后,函数返回计算得到的亮度标准差。
 */
double calculateBrightnessStdDev( const cv::Mat& imgGray )
{
    // 确保输入图像为单通道的8位无符号整型灰度图像
    CV_Assert( imgGray.type() == CV_8UC1 );

    // 计算图像的均值和标准差
    cv::Scalar mean, stddev;
    cv::meanStdDev( imgGray, mean, stddev );

    // 返回图像亮度的标准差
    return stddev.val[ 0 ];
}

int main( int argc, char** argv )
{
    // 读取图像并转换为灰度
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/fruit.jpg", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 计算并打印图像的亮度标准差
    double stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image fruit is: " << stdDev << std::endl;

    img    = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/black.jpg", cv::IMREAD_GRAYSCALE );
    stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image black is: " << stdDev << std::endl;

    return 0;
}

运行结果

我拿了两张图进行计算,如下:

运行结果如下:

从结果看出第一张的明暗变化度明显大于第二张图像的明暗变化度

相关推荐
johnny23340 分钟前
AI工作流编排平台
人工智能
百***35481 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6662 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...2 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手2 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式3 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元3 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI4 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来4 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型4 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai