OpenCV如何判断一张图片是否有过高的明暗变化

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

前言

判断一张图片是否有过高的明暗变化,可以通过分析图像的亮度分布一致性来实现。一种常见的做法是计算图像的亮度标准差(Standard Deviation)。标准差越大,表示图像中的亮度差异越大,即明暗变化可能较为剧烈。

代码实现

在C++中,你可以直接使用OpenCV库与C++标准库或Boost等数学库结合来计算图像的亮度标准差。虽然OpenCV的cv::Mat类本身不直接提供标准差计算函数,但你可以利用OpenCV的数据结构配合C++ STL中的算法来实现这一功能。以下是一个使用C++和OpenCV计算图像亮度标准差的例子:

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

/**
 * 计算灰度图像的亮度标准差
 * @param imgGray 输入的灰度图像,必须是单通道的8位无符号整型图像。
 * @return 返回图像亮度的标准差。
 * 
 * 该函数接收一个灰度图像作为输入,首先验证图像的类型是否满足要求,
 * 然后使用OpenCV的meanStdDev函数计算图像亮度的均值和标准差。
 * 最后,函数返回计算得到的亮度标准差。
 */
double calculateBrightnessStdDev( const cv::Mat& imgGray )
{
    // 确保输入图像为单通道的8位无符号整型灰度图像
    CV_Assert( imgGray.type() == CV_8UC1 );

    // 计算图像的均值和标准差
    cv::Scalar mean, stddev;
    cv::meanStdDev( imgGray, mean, stddev );

    // 返回图像亮度的标准差
    return stddev.val[ 0 ];
}

int main( int argc, char** argv )
{
    // 读取图像并转换为灰度
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/fruit.jpg", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 计算并打印图像的亮度标准差
    double stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image fruit is: " << stdDev << std::endl;

    img    = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/black.jpg", cv::IMREAD_GRAYSCALE );
    stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image black is: " << stdDev << std::endl;

    return 0;
}

运行结果

我拿了两张图进行计算,如下:

运行结果如下:

从结果看出第一张的明暗变化度明显大于第二张图像的明暗变化度

相关推荐
昨日之日20064 分钟前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水5 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室6 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿6 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记7 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶