Qwen2是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习大语言模型微调的入门任务。
指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。 其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。 这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。
在这个任务中我们会使用Qwen2-1.5b-Instruct模型在zh_cls_fudan_news数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。
- 代码:完整代码直接看本文第5节
- 实验日志过程:Qwen2-1.5B-Fintune - SwanLab
- 模型:Modelscope
- 数据集:zh_cls_fudan_news
- SwanLab:swanlab.cn
本教程参考了这篇文章。
1.环境安装
本案例基于Python>=3.8
,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。
我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装了pytorch以及CUDA:
txt
swanlab
modelscope
transformers
datasets
peft
accelerat
pandas
一键安装命令:
bash
pip install swanlab modelscope transformers datasets peft pandas
本案例测试于modelscope==1.14.0、transformers==4.41.2、datasets==2.18.0、peft==0.11.1、accelerate==0.30.1、swanlab==0.3.9
2.准备数据集
本案例使用的是zh_cls_fudan-news数据集,该数据集主要被用于训练文本分类模型。
zh_cls_fudan-news由几千条数据,每条数据包含text、category、output三列:
- text 是训练语料,内容是书籍或新闻的文本内容
- category 是text的多个备选类型组成的列表
- output 则是text唯一真实的类型
数据集例子如下:
python
"""
[PROMPT]Text: 第四届全国大企业足球赛复赛结束新华社郑州5月3日电(实习生田兆运)上海大隆机器厂队昨天在洛阳进行的第四届牡丹杯全国大企业足球赛复赛中,以5:4力克成都冶金实验厂队,进入前四名。沪蓉之战,双方势均力敌,90分钟不分胜负。最后,双方互射点球,沪队才以一球优势取胜。复赛的其它3场比赛,青海山川机床铸造厂队3:0击败东道主洛阳矿山机器厂队,青岛铸造机械厂队3:1战胜石家庄第一印染厂队,武汉肉联厂队1:0险胜天津市第二冶金机械厂队。在今天进行的决定九至十二名的两场比赛中,包钢无缝钢管厂队和河南平顶山矿务局一矿队分别击败河南平顶山锦纶帘子布厂队和江苏盐城无线电总厂队。4日将进行两场半决赛,由青海山川机床铸造厂队和青岛铸造机械厂队分别与武汉肉联厂队和上海大隆机器厂队交锋。本届比赛将于6日结束。(完)
Category: Sports, Politics
Output:[OUTPUT]Sports
"""
我们的训练任务,便是希望微调后的大模型能够根据Text和Category组成的提示词,预测出正确的Output。
我们将数据集下载到本地目录下。下载方式是前往zh_cls_fudan-news - 魔搭社区 ,将train.jsonl
和test.jsonl
下载到本地根目录下即可:
3. 加载模型
这里我们使用modelscope下载Qwen2-1.5B-Instruct模型(modelscope在国内,所以下载不用担心速度和稳定性问题),然后把它加载到Transformers中进行训练:
python
from modelscope import snapshot_download, AutoTokenizer
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
# 在modelscope上下载Qwen模型到本地目录下
model_dir = snapshot_download("qwen/Qwen2-1.5B-Instruct", cache_dir="./", revision="master")
# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16)
4. 配置训练可视化工具
我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。
这里直接使用SwanLab和Transformers的集成来实现:
python
from swanlab.integration.huggingface import SwanLabCallback
swanlab_callback = SwanLabCallback(...)
trainer = Trainer(
...
callbacks=[swanlab_callback],
)
如果你是第一次使用SwanLab,那么还需要去swanlab.cn上注册一个账号,在用户设置页面复制你的API Key,然后在训练开始时粘贴进去即可:
5. 完整代码
开始训练时的目录结构:
txt
|--- train.py
|--- train.jsonl
|--- test.jsonl
python
import json
import pandas as pd
import torch
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.huggingface import SwanLabCallback
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import os
import swanlab
def dataset_jsonl_transfer(origin_path, new_path):
"""
将原始数据集转换为大模型微调所需数据格式的新数据集
"""
messages = []
# 读取旧的JSONL文件
with open(origin_path, "r") as file:
for line in file:
# 解析每一行的json数据
data = json.loads(line)
context = data["text"]
catagory = data["category"]
label = data["output"]
message = {
"instruction": "你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项,请输出文本内容的正确类型",
"input": f"文本:{context},类型选型:{catagory}",
"output": label,
}
messages.append(message)
# 保存重构后的JSONL文件
with open(new_path, "w", encoding="utf-8") as file:
for message in messages:
file.write(json.dumps(message, ensure_ascii=False) + "\n")
def process_func(example):
"""
将数据集进行预处理
"""
MAX_LENGTH = 384
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer(
f"<|im_start|>system\n你是一个文本分类领域的专家,你会接收到一段文本和几个潜在的分类选项,请输出文本内容的正确类型<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n",
add_special_tokens=False,
)
response = tokenizer(f"{example['output']}", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = (
instruction["attention_mask"] + response["attention_mask"] + [1]
)
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
def predict(messages, model, tokenizer):
device = "cuda"
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
return response
# 在modelscope上下载Qwen模型到本地目录下
model_dir = snapshot_download("qwen/Qwen2-1.5B-Instruct", cache_dir="./", revision="master")
# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16)
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
# 加载、处理数据集和测试集
train_dataset_path = "train.jsonl"
test_dataset_path = "test.jsonl"
train_jsonl_new_path = "new_train.jsonl"
test_jsonl_new_path = "new_test.jsonl"
if not os.path.exists(train_jsonl_new_path):
dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path)
if not os.path.exists(test_jsonl_new_path):
dataset_jsonl_transfer(test_dataset_path, test_jsonl_new_path)
# 得到训练集
train_df = pd.read_json(train_jsonl_new_path, lines=True)
train_ds = Dataset.from_pandas(train_df)
train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names)
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1, # Dropout 比例
)
model = get_peft_model(model, config)
args = TrainingArguments(
output_dir="./output/Qwen1.5",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
logging_steps=10,
num_train_epochs=2,
save_steps=100,
learning_rate=1e-4,
save_on_each_node=True,
gradient_checkpointing=True,
report_to="none",
)
swanlab_callback = SwanLabCallback(
project="Qwen2-fintune",
experiment_name="Qwen2-1.5B-Instruct",
description="使用通义千问Qwen2-1.5B-Instruct模型在zh_cls_fudan-news数据集上微调。",
config={
"model": "qwen/Qwen2-1.5B-Instruct",
"dataset": "huangjintao/zh_cls_fudan-news",
}
)
trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
callbacks=[swanlab_callback],
)
trainer.train()
# 用测试集的前10条,测试模型
test_df = pd.read_json(test_jsonl_new_path, lines=True)[:10]
test_text_list = []
for index, row in test_df.iterrows():
instruction = row['instruction']
input_value = row['input']
messages = [
{"role": "system", "content": f"{instruction}"},
{"role": "user", "content": f"{input_value}"}
]
response = predict(messages, model, tokenizer)
messages.append({"role": "assistant", "content": f"{response}"})
result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}"
test_text_list.append(swanlab.Text(result_text, caption=response))
swanlab.log({"Prediction": test_text_list})
swanlab.finish()
看到下面的进度条即代表训练开始:
6.训练结果演示
在SwanLab上查看最终的训练结果:
可以看到在2个epoch之后,微调后的qwen2的loss降低到了不错的水平------当然对于大模型来说,真正的效果评估还得看主观效果。
可以看到在一些测试样例上,微调后的qwen2能够给出准确的文本类型:
至此,你已经完成了qwen2指令微调的训练!
相关链接
- 代码:完整代码直接看本文第5节
- 实验日志过程:Qwen2-1.5B-Fintune - SwanLab
- 模型:Modelscope
- 数据集:zh_cls_fudan_news
- SwanLab:swanlab.cn