Django openai websocket live chat

This code works on openai==0.28

python 复制代码
## consumers.py
## consumers.py
import json
import os

from channels.generic.websocket import AsyncWebsocketConsumer
import openai
import asyncio
from django.conf import settings
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'AutoServer.settings')
openai.api_key = settings.OPENAI_API_KEY


class ChatConsumer(AsyncWebsocketConsumer):
    async def connect(self):
        await self.accept()

    async def disconnect(self, close_code):
        pass

    async def receive(self, text_data):
        data = json.loads(text_data)
        prompt = data['prompt']

        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, self.stream_openai_response, prompt)

    def stream_openai_response(self, prompt):
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": prompt}],
            stream=True,
        )
        for chunk in response:
            if chunk.choices[0].delta.get('content'):
                asyncio.run(self.send_streaming_data(chunk.choices[0].delta['content']))
                ## return to the webpage as stream

    async def send_streaming_data(self, content):
        await self.send(text_data=json.dumps({
            'response': content
        }))

This works on newest version, 1.31

python 复制代码
import json
import openai
import asyncio
from channels.generic.websocket import AsyncWebsocketConsumer
from django.conf import settings
import os
from openai import OpenAI

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'AutoServer.settings')
api_key = settings.OPENAI_API_KEY
client = OpenAI(api_key=api_key)
class ChatConsumer(AsyncWebsocketConsumer):
    async def connect(self):
        await self.accept()

    async def disconnect(self, close_code):
        pass

    async def receive(self, text_data):
        data = json.loads(text_data)
        prompt = data['prompt']
        # key part, the loop
        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, self.stream_openai_response, prompt)

    def stream_openai_response(self, prompt):
        response = client.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt},
            ],
            stream=True,
        )
        for chunk in response:
            if chunk.choices[0].delta.content:
                asyncio.run(self.send_streaming_data(chunk.choices[0].delta.content))

    async def send_streaming_data(self, content):
        await self.send(text_data=json.dumps({
            'response': content
        }))
相关推荐
北风toto31 分钟前
python学习DataFrame数据结构
数据结构·python·学习
亿牛云爬虫专家35 分钟前
微服务化采集平台:可扩展性与容错机制
python·微服务·架构·爬虫代理·扩展性·新浪财经·财经新闻
傻啦嘿哟1 小时前
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
爬虫·python·tcp/ip
mit6.8241 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
zhangfeng11331 小时前
python 数据分析 单细胞测序数据分析 相关的图表,常见于肿瘤免疫微环境、细胞亚群功能研究 ,各图表类型及逻辑关系如下
开发语言·python·数据分析·医学
柠檬豆腐脑1 小时前
Trae-Agent 内置工具深度解析
python·llm·agent
ydl11282 小时前
机器学习基础知识【 激活函数、损失函数、优化器、 正则化、调度器、指标函数】
python·机器学习
哈里谢顿2 小时前
Django博客项目集成Celery实现定时心跳监控系统
django
chao_7893 小时前
CSS表达式——下篇【selenium】
css·python·selenium·算法
倔强青铜三3 小时前
苦练Python第10天:for 循环与 range() 函数
人工智能·python·面试