基于双向长短时记忆神经网络结合多头注意力机制BiLSTM-Mutilhead-Attention实现柴油机故障诊断附matlab代码

% 加载数据集和标签

load('diesel_dataset.mat'); % 假设数据集存储在 diesel_dataset.mat 文件中

data = diesel_dataset.data;

labels = diesel_dataset.labels;

% 数据预处理

% 这里假设你已经完成了数据的预处理,包括特征提取、归一化等步骤

% 划分训练集和测试集

trainData, trainLabels, testData, testLabels\] = splitData(data, labels, 0.8); % 定义模型参数 inputSize = size(trainData, 2); numClasses = numel(unique(labels)); hiddenSize = 128; numLayers = 2; numHeads = 4; % 构建双向LSTM层 bilstmLayer = bidirectionalLSTMLayer(hiddenSize, "OutputMode", "sequence"); % 构建多头注意力层 attentionLayer = multiheadAttentionLayer(hiddenSize, numHeads); % 构建分类层 classificationLayer = classificationLayer("Name", "classification"); % 构建网络模型 layers = \[ sequenceInputLayer(inputSize, "Name", "input") bilstmLayer attentionLayer classificationLayer \]; % 定义训练选项 options = trainingOptions("adam", ... "MaxEpochs", 20, ... "MiniBatchSize", 32, ... "Plots", "training-progress"); % 训练模型 net = trainNetwork(trainData, categorical(trainLabels), layers, options); % 在测试集上评估模型 predictions = classify(net, testData); accuracy = sum(predictions == categorical(testLabels)) / numel(testLabels); disp("测试集准确率: " + accuracy); % 辅助函数:划分数据集 function \[trainData, trainLabels, testData, testLabels\] = splitData(data, labels, trainRatio) numSamples = size(data, 1); indices = randperm(numSamples); trainSize = round(trainRatio \* numSamples); trainIndices = indices(1:trainSize); testIndices = indices(trainSize+1:end); trainData = data(trainIndices, :); trainLabels = labels(trainIndices); testData = data(testIndices, :); testLabels = labels(testIndices); end

相关推荐
攻城狮7号2 分钟前
Resemble AI发布开源语音模型Chatterbox Turbo:让语音助手不再像个机器人
人工智能·chatterbox·resemble-ai·开源语音模型
狮子座明仔3 分钟前
DeepSeek开年王炸:mHC架构——用流形约束重构残差连接的革命性突破
人工智能·语言模型·自然语言处理
是有头发的程序猿8 分钟前
Python爬虫防AI检测实战指南:从基础到高级的规避策略
人工智能·爬虫·python
墨_浅-10 分钟前
分阶段训练金融大模型01-理论基础
人工智能·金融·百度云
咕噜企业分发小米15 分钟前
阿里云和华为云AI教育产品有哪些创新功能?
人工智能·阿里云·华为云
DeepVis Research19 分钟前
【BCI/Consensus】2026年度脑机接口协同与分布式共识机制基准索引 (Benchmark Index)
人工智能·网络安全·数据集·脑机接口·分布式系统
cyyt19 分钟前
深度学习周报(25.12.29~26.1.4)
人工智能·深度学习
自不量力的A同学21 分钟前
Resemble AI 发布开源语音合成模型 Chatterbox Turbo
人工智能
Master_oid21 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习