基于双向长短时记忆神经网络结合多头注意力机制BiLSTM-Mutilhead-Attention实现柴油机故障诊断附matlab代码

% 加载数据集和标签

load('diesel_dataset.mat'); % 假设数据集存储在 diesel_dataset.mat 文件中

data = diesel_dataset.data;

labels = diesel_dataset.labels;

% 数据预处理

% 这里假设你已经完成了数据的预处理,包括特征提取、归一化等步骤

% 划分训练集和测试集

trainData, trainLabels, testData, testLabels\] = splitData(data, labels, 0.8); % 定义模型参数 inputSize = size(trainData, 2); numClasses = numel(unique(labels)); hiddenSize = 128; numLayers = 2; numHeads = 4; % 构建双向LSTM层 bilstmLayer = bidirectionalLSTMLayer(hiddenSize, "OutputMode", "sequence"); % 构建多头注意力层 attentionLayer = multiheadAttentionLayer(hiddenSize, numHeads); % 构建分类层 classificationLayer = classificationLayer("Name", "classification"); % 构建网络模型 layers = \[ sequenceInputLayer(inputSize, "Name", "input") bilstmLayer attentionLayer classificationLayer \]; % 定义训练选项 options = trainingOptions("adam", ... "MaxEpochs", 20, ... "MiniBatchSize", 32, ... "Plots", "training-progress"); % 训练模型 net = trainNetwork(trainData, categorical(trainLabels), layers, options); % 在测试集上评估模型 predictions = classify(net, testData); accuracy = sum(predictions == categorical(testLabels)) / numel(testLabels); disp("测试集准确率: " + accuracy); % 辅助函数:划分数据集 function \[trainData, trainLabels, testData, testLabels\] = splitData(data, labels, trainRatio) numSamples = size(data, 1); indices = randperm(numSamples); trainSize = round(trainRatio \* numSamples); trainIndices = indices(1:trainSize); testIndices = indices(trainSize+1:end); trainData = data(trainIndices, :); trainLabels = labels(trainIndices); testData = data(testIndices, :); testLabels = labels(testIndices); end

相关推荐
zhengfei6115 分钟前
精选资源、工具、论文和平台,用于快速构建大型语言模型 (LLM) 和生成式人工智能
人工智能
程序员:钧念7 分钟前
深度学习与大语言模型LLM的区别
人工智能·python·深度学习·语言模型·自然语言处理·transformer·agent
数智顾问8 分钟前
(162页PPT)罗兰贝格奥迪品牌浙江和广某省市场提升战略(附下载方式)
人工智能
旷野说10 分钟前
工银科技-人工智能平台
人工智能·科技
wechat_Neal11 分钟前
Overview of AI concepts-Computer vision
人工智能·计算机视觉
学习3人组11 分钟前
大模型领域的核心相关名词解释
人工智能·机器学习·语言模型
想搞艺术的程序员12 分钟前
Anthropic Agent Skills深度解析:模块化技能如何重塑AI智能体落地能力
人工智能
Johnny.Cheung13 分钟前
开源免费的AI浏览器ChatGPT Atlas的可选平替Toutcas-“用后即焚”
人工智能·chatgpt·ai浏览器·toutcas·ai浏览助理
明月醉窗台16 分钟前
Opencv 之常用跟踪器汇总
人工智能·opencv·目标检测·计算机视觉·目标跟踪
石云升17 分钟前
Claude Code 配置教程:如何通过修改 settings.json 优化 AI 编程体验
人工智能·json