基于双向长短时记忆神经网络结合多头注意力机制BiLSTM-Mutilhead-Attention实现柴油机故障诊断附matlab代码

% 加载数据集和标签

load('diesel_dataset.mat'); % 假设数据集存储在 diesel_dataset.mat 文件中

data = diesel_dataset.data;

labels = diesel_dataset.labels;

% 数据预处理

% 这里假设你已经完成了数据的预处理,包括特征提取、归一化等步骤

% 划分训练集和测试集

trainData, trainLabels, testData, testLabels\] = splitData(data, labels, 0.8); % 定义模型参数 inputSize = size(trainData, 2); numClasses = numel(unique(labels)); hiddenSize = 128; numLayers = 2; numHeads = 4; % 构建双向LSTM层 bilstmLayer = bidirectionalLSTMLayer(hiddenSize, "OutputMode", "sequence"); % 构建多头注意力层 attentionLayer = multiheadAttentionLayer(hiddenSize, numHeads); % 构建分类层 classificationLayer = classificationLayer("Name", "classification"); % 构建网络模型 layers = \[ sequenceInputLayer(inputSize, "Name", "input") bilstmLayer attentionLayer classificationLayer \]; % 定义训练选项 options = trainingOptions("adam", ... "MaxEpochs", 20, ... "MiniBatchSize", 32, ... "Plots", "training-progress"); % 训练模型 net = trainNetwork(trainData, categorical(trainLabels), layers, options); % 在测试集上评估模型 predictions = classify(net, testData); accuracy = sum(predictions == categorical(testLabels)) / numel(testLabels); disp("测试集准确率: " + accuracy); % 辅助函数:划分数据集 function \[trainData, trainLabels, testData, testLabels\] = splitData(data, labels, trainRatio) numSamples = size(data, 1); indices = randperm(numSamples); trainSize = round(trainRatio \* numSamples); trainIndices = indices(1:trainSize); testIndices = indices(trainSize+1:end); trainData = data(trainIndices, :); trainLabels = labels(trainIndices); testData = data(testIndices, :); testLabels = labels(testIndices); end

相关推荐
阿标在干嘛1 分钟前
从“信息平台”到“决策模拟器”:科技大数据服务的下一站猜想
人工智能·科技
JicasdC123asd1 分钟前
YOLO11-C2TSSA-DYT-Mona-EDFFN改进模型_基于深度学习的起重机与吊载物检测识别研究
人工智能·深度学习
Jing_jing_X2 分钟前
从本地 Demo 到私有化部署:AI 应用开发环境的正确打开方式
人工智能
智慧医院运行管理解决方案专家4 分钟前
平安医院 智守心安 | AI智能巡逻机器人 全时域守护日志
人工智能·机器人
I'm Salted Fish4 分钟前
基于LLaMA-Factory大语言模型微调实战-训练一个属于自己的大模型
人工智能·语言模型·llama
Deepoch5 分钟前
Deepoc具身模型开发板:让采摘机器人成为果园的“智能农艺师“
人工智能·机器人·农业·采摘机器人·具身模型·deepoc·采摘
qunaa01018 分钟前
起重机类型识别与检测:使用YOLO11-C3k2-AP模型提升目标检测精度_1
人工智能·目标检测·计算机视觉
极客Kimi8 分钟前
从Java架构到AI架构:机器学习、深度学习与LLM的技术融合之路
java·人工智能·架构
HyperAI超神经9 分钟前
揭秘 AI 推理:OpenAI 稀疏模型让神经网络首次透明化;Calories Burnt Prediction:为健身模型注入精准能量数据
人工智能·深度学习·神经网络·机器学习·开源·ai编程
龙亘川10 分钟前
深度解析《人工智能安全治理研究报告(2025)》:产业实践框架与技术落地指南
人工智能·数据集团