【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否相等。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

0 1 2 3 4
b a b a d

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

1 2 3
a b a

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相当 + dp[i+1][j-1] 是否相等。

3. 代码

python 复制代码
class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[0] * len(s) for i in range(len(s))]
        
        for cur_length in range(1, len(s)+1):
            for i in range(0, len(s)):
                j = i + cur_length - 1 # 终点下标
                if j >= len(s): # 越界处理
                    continue
                if j == i:
                    dp[i][j] = 1
                    continue
                if cur_length == 2: # 长度为2的区间
                    if s[j] == s[i]:
                        dp[i][j] = 1
                    continue
                if s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同
                    dp[i][j] = 1

        # print(dp)
        max_len = 0
        res = ""
        for i in range(len(s)):
            for j in range(len(s)):
                if dp[i][j] == 1:
                    if j-i+1 > max_len:
                        max_len = max(max_len, j-i+1)
                        res = s[i:j+1]
        return res
相关推荐
vortex54 分钟前
算法设计与分析 知识总结
算法
艾莉丝努力练剑20 分钟前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
ZZZS051629 分钟前
stack栈练习
c++·笔记·学习·算法·动态规划
黑听人35 分钟前
【力扣 困难 C】115. 不同的子序列
c语言·leetcode
hans汉斯1 小时前
【人工智能与机器人研究】基于力传感器坐标系预标定的重力补偿算法
人工智能·算法·机器人·信号处理·深度神经网络
vortex52 小时前
算法设计与分析:分治、动态规划与贪心算法的异同与选择
算法·贪心算法·动态规划
前端拿破轮3 小时前
🤡🤡🤡面试官:就你这还每天刷leetcode?连四数相加和四数之和都分不清!
算法·leetcode·面试
地平线开发者3 小时前
征程 6|工具链量化简介与代码实操
算法·自动驾驶
DoraBigHead3 小时前
🧠 小哆啦解题记——谁偷改了狗狗的台词?
算法
Kaltistss3 小时前
240.搜索二维矩阵Ⅱ
线性代数·算法·矩阵