【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否相等。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

0 1 2 3 4
b a b a d

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

1 2 3
a b a

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相当 + dp[i+1][j-1] 是否相等。

3. 代码

python 复制代码
class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[0] * len(s) for i in range(len(s))]
        
        for cur_length in range(1, len(s)+1):
            for i in range(0, len(s)):
                j = i + cur_length - 1 # 终点下标
                if j >= len(s): # 越界处理
                    continue
                if j == i:
                    dp[i][j] = 1
                    continue
                if cur_length == 2: # 长度为2的区间
                    if s[j] == s[i]:
                        dp[i][j] = 1
                    continue
                if s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同
                    dp[i][j] = 1

        # print(dp)
        max_len = 0
        res = ""
        for i in range(len(s)):
            for j in range(len(s)):
                if dp[i][j] == 1:
                    if j-i+1 > max_len:
                        max_len = max(max_len, j-i+1)
                        res = s[i:j+1]
        return res
相关推荐
海琴烟Sunshine2 小时前
leetcode 383. 赎金信 python
python·算法·leetcode
cynicme8 小时前
力扣3228——将 1 移动到末尾的最大操作次数
算法·leetcode
熬了夜的程序员8 小时前
【LeetCode】109. 有序链表转换二叉搜索树
数据结构·算法·leetcode·链表·职场和发展·深度优先
随意起个昵称8 小时前
【递归】二进制字符串中的第K位
c++·算法
mjhcsp9 小时前
C++ 循环结构:控制程序重复执行的核心机制
开发语言·c++·算法
立志成为大牛的小牛9 小时前
数据结构——四十一、分块查找(索引顺序查找)(王道408)
数据结构·学习·程序人生·考研·算法
xier_ran9 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
地平线开发者9 小时前
不同传感器前中后融合方案简介
算法·自动驾驶
地平线开发者10 小时前
征程 6X 常见 kernel panic 问题
算法·自动驾驶
com_4sapi11 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人