【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否相等。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

0 1 2 3 4
b a b a d

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

1 2 3
a b a

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相当 + dp[i+1][j-1] 是否相等。

3. 代码

python 复制代码
class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[0] * len(s) for i in range(len(s))]
        
        for cur_length in range(1, len(s)+1):
            for i in range(0, len(s)):
                j = i + cur_length - 1 # 终点下标
                if j >= len(s): # 越界处理
                    continue
                if j == i:
                    dp[i][j] = 1
                    continue
                if cur_length == 2: # 长度为2的区间
                    if s[j] == s[i]:
                        dp[i][j] = 1
                    continue
                if s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同
                    dp[i][j] = 1

        # print(dp)
        max_len = 0
        res = ""
        for i in range(len(s)):
            for j in range(len(s)):
                if dp[i][j] == 1:
                    if j-i+1 > max_len:
                        max_len = max(max_len, j-i+1)
                        res = s[i:j+1]
        return res
相关推荐
橙汁味的风6 小时前
2EM算法详解
人工智能·算法·机器学习
维构lbs智能定位6 小时前
北斗卫星导航定位从核心框架到定位流程详解(一)
算法·北斗卫星导航定位系统
byzh_rc6 小时前
[算法设计与分析-从入门到入土] 动态规划
算法·动态规划
Halo_tjn6 小时前
Java List集合知识点
java·开发语言·windows·算法·list
云飞云共享云桌面7 小时前
河北某机器人工厂8个研发设计共享一台SolidWorks云主机
运维·服务器·网络·数据库·算法·性能优化·机器人
元亓亓亓7 小时前
LeetCode热题100--152. 乘积最大子数组--中等
算法·leetcode·职场和发展
执笔论英雄7 小时前
【RL】Slime训练流程
算法
梭七y8 小时前
【力扣hot100题】(103)移动零
数据结构·算法·leetcode
weixin_413063218 小时前
测试《A Simple Algorithm for Fitting a Gaussian Function》拟合
python·算法
MarkHD8 小时前
智能体在车联网中的应用:第31天 基于RLlib的多智能体PPO实战:MAPPO算法解决simple_spread合作任务
算法