【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否相等。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

0 1 2 3 4
b a b a d

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

1 2 3
a b a

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相当 + dp[i+1][j-1] 是否相等。

3. 代码

python 复制代码
class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[0] * len(s) for i in range(len(s))]
        
        for cur_length in range(1, len(s)+1):
            for i in range(0, len(s)):
                j = i + cur_length - 1 # 终点下标
                if j >= len(s): # 越界处理
                    continue
                if j == i:
                    dp[i][j] = 1
                    continue
                if cur_length == 2: # 长度为2的区间
                    if s[j] == s[i]:
                        dp[i][j] = 1
                    continue
                if s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同
                    dp[i][j] = 1

        # print(dp)
        max_len = 0
        res = ""
        for i in range(len(s)):
            for j in range(len(s)):
                if dp[i][j] == 1:
                    if j-i+1 > max_len:
                        max_len = max(max_len, j-i+1)
                        res = s[i:j+1]
        return res
相关推荐
稚辉君.MCA_P8_Java18 分钟前
Gemini永久会员 Go 实现动态规划
数据结构·后端·算法·golang·动态规划
快手技术35 分钟前
快手 & 南大发布代码智能“指南针”,重新定义 AI 编程能力评估体系
算法
Murphy_lx1 小时前
C++ std_stringstream
开发语言·c++·算法
CoovallyAIHub1 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉
哭泣方源炼蛊2 小时前
HAUE 新生周赛(七)题解
数据结构·c++·算法
q***64972 小时前
SpringMVC 请求参数接收
前端·javascript·算法
Lwcah2 小时前
Python | LGBM+SHAP可解释性分析回归预测及可视化算法
python·算法·回归
小此方2 小时前
从零开始手搓堆:核心操作实现 + 堆排序 + TopK 算法+ 向上调整 vs 向下调整建堆的时间复杂度严密证明!
开发语言·数据结构·算法
前端炒粉6 小时前
35.LRU 缓存
开发语言·javascript·数据结构·算法·缓存·js
断剑zou天涯7 小时前
【算法笔记】窗口内最大值或最小值的更新结构
java·笔记·算法