【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否相等。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

0 1 2 3 4
b a b a d

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

1 2 3
a b a

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相当 + dp[i+1][j-1] 是否相等。

3. 代码

python 复制代码
class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[0] * len(s) for i in range(len(s))]
        
        for cur_length in range(1, len(s)+1):
            for i in range(0, len(s)):
                j = i + cur_length - 1 # 终点下标
                if j >= len(s): # 越界处理
                    continue
                if j == i:
                    dp[i][j] = 1
                    continue
                if cur_length == 2: # 长度为2的区间
                    if s[j] == s[i]:
                        dp[i][j] = 1
                    continue
                if s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同
                    dp[i][j] = 1

        # print(dp)
        max_len = 0
        res = ""
        for i in range(len(s)):
            for j in range(len(s)):
                if dp[i][j] == 1:
                    if j-i+1 > max_len:
                        max_len = max(max_len, j-i+1)
                        res = s[i:j+1]
        return res
相关推荐
Zachary_zlc3 分钟前
有向无环图检测算法和关键路径算法
算法
你撅嘴真丑5 分钟前
素数回文数的个数 与 求分数序列和
算法
Wuliwuliii13 分钟前
贡献延迟计算DP
数据结构·c++·算法·动态规划·dp
ysn1111117 分钟前
简单多边形三角剖分---耳切法(含源码)
算法
e疗AI产品之路18 分钟前
一文介绍Philips DXL心电图算法
算法·pan-tompkins·心电分析
YGGP24 分钟前
【Golang】LeetCode 21. 合并两个有序链表
leetcode·链表·golang
小袁顶风作案27 分钟前
leetcode力扣——135.分发糖果
算法·leetcode·职场和发展
橘颂TA38 分钟前
【Linux】从 “抢资源” 到 “优雅控场”:Linux 互斥锁的原理与 C++ RAII 封装实战(Ⅰ)
linux·运维·服务器·c++·算法
YGGP1 小时前
【Golang】LeetCode 19. 删除链表的倒数第 N 个节点
算法·leetcode·链表