OpenCV查找图像中的轮廓并且展示

1、查找轮廓随机用不同的颜色画出

python 复制代码
import cv2
import numpy as np


def get_contour_colors(num_contours):
    # 定义颜色表 (BGR 格式)
    colors = [
        (255, 0, 0),
        (255, 50, 0),
        (255, 100, 0),
        (255, 150, 0),
        (255, 200, 0),
        (255, 255, 0),
        (200, 255, 0),
        (150, 255, 0),
        (100, 255, 0),
        (50, 255, 0),
        (0, 255, 0),
        (0, 255, 50),
        (0, 255, 100),
        (0, 255, 150),
        (0, 255, 200),
        (0, 255, 255),
        (0, 200, 255),
        (0, 150, 255),
        (0, 100, 255),
        (0, 50, 255),
        (0, 0, 255),
    ]
    # 返回一个颜色表
    return [colors[i % len(colors)] for i in range(num_contours)]


def fill_contours(img, contours):
    # 创建空白的图像,用来画轮廓表
    filled_img = np.zeros_like(img)
    num_contours = len(contours)
    # 颜色表
    colors = get_contour_colors(num_contours)

    for i, contour in enumerate(contours):
        cv2.drawContours(filled_img, [contour], -1, colors[i], -1)

    return filled_img


# 读取原图,原图是RGB图
img = cv2.imread('1.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 查找轮廓
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# 填充轮廓
filled_img = fill_contours(img, contours)


cv2.imshow('Filled Contours', filled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图:

输出:

2、查找轮廓按大小用不同的颜色画出

python 复制代码
import cv2
import numpy as np



def get_color(k, start_color=(255, 0, 0), end_color=(0, 0, 255)):
    out_color = []   # 输出的颜色
    for i in range(3):
        single_color = int((end_color[i] - start_color[i]) * k + start_color[i])
        out_color.append(single_color)
    for j in range(3):
        if out_color[j] > 255:
            out_color[j] = 255
        elif out_color[j] < 0:
            out_color[j] = 0

    return out_color


def fill_contours(img, contours):
    # 创建空白的图像,用来画轮廓表
    filled_img = np.zeros_like(img)
    # num_contours = len(contours)

    dims = []   # 所有的轮廓的尺寸
    for contour in contours:
        rect = cv2.minAreaRect(contour)  # 获取最小外接矩形
        dia = rect[1][0] if rect[1][0] <= rect[1][1] else rect[1][1]  # 计算轮廓的最短尺寸,并获取直径
        dims.append(dia)
    max_dim = max(dims)  # 最大尺寸
    min_dim = min(dims)  # 最小尺寸
    range_dim = max_dim - min_dim   # 尺寸范围

    for i, contour in enumerate(contours):
        rect = cv2.minAreaRect(contour)  # 获取最小外接矩形
        dia = rect[1][0] if rect[1][0] <= rect[1][1] else rect[1][1]  # 计算轮廓的最短尺寸,并获取直径
        k = (dia - min_dim) / range_dim    # 尺寸比例
        color = get_color(k)    # 获取颜色
        cv2.drawContours(filled_img, [contour], -1, color, -1)

    return filled_img


# 读取原图,原图是RGB图
img = cv2.imread('1.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 查找轮廓
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# 填充轮廓
filled_img = fill_contours(img, contours)

cv2.imshow('Filled Contours', filled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

相关推荐
亚里随笔13 分钟前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
牛客企业服务32 分钟前
AI面试实用性解析:不是“能不能用”,而是“怎么用好”
人工智能·面试·职场和发展
MicroTech20251 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
救救孩子把1 小时前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap
趣知岛1 小时前
AI是否能代替从业者
人工智能
F_D_Z1 小时前
【Python】家庭用电数据的时序分析
python·数据分析·时序分析·序列分解
allan bull2 小时前
在节日中寻找平衡:圣诞的欢乐与传统节日的温情
人工智能·学习·算法·职场和发展·生活·求职招聘·节日
a程序小傲2 小时前
蚂蚁Java面试被问:注解的工作原理及如何自定义注解
java·开发语言·python·面试
土豆12502 小时前
程序员约会指南:从代码到爱情的完美编译
人工智能
Coder_Boy_2 小时前
SpringAI与LangChain4j的智能应用-(实践篇2)
人工智能·springboot·aiops·langchain4j