OpenCV查找图像中的轮廓并且展示

1、查找轮廓随机用不同的颜色画出

python 复制代码
import cv2
import numpy as np


def get_contour_colors(num_contours):
    # 定义颜色表 (BGR 格式)
    colors = [
        (255, 0, 0),
        (255, 50, 0),
        (255, 100, 0),
        (255, 150, 0),
        (255, 200, 0),
        (255, 255, 0),
        (200, 255, 0),
        (150, 255, 0),
        (100, 255, 0),
        (50, 255, 0),
        (0, 255, 0),
        (0, 255, 50),
        (0, 255, 100),
        (0, 255, 150),
        (0, 255, 200),
        (0, 255, 255),
        (0, 200, 255),
        (0, 150, 255),
        (0, 100, 255),
        (0, 50, 255),
        (0, 0, 255),
    ]
    # 返回一个颜色表
    return [colors[i % len(colors)] for i in range(num_contours)]


def fill_contours(img, contours):
    # 创建空白的图像,用来画轮廓表
    filled_img = np.zeros_like(img)
    num_contours = len(contours)
    # 颜色表
    colors = get_contour_colors(num_contours)

    for i, contour in enumerate(contours):
        cv2.drawContours(filled_img, [contour], -1, colors[i], -1)

    return filled_img


# 读取原图,原图是RGB图
img = cv2.imread('1.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 查找轮廓
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# 填充轮廓
filled_img = fill_contours(img, contours)


cv2.imshow('Filled Contours', filled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图:

输出:

2、查找轮廓按大小用不同的颜色画出

python 复制代码
import cv2
import numpy as np



def get_color(k, start_color=(255, 0, 0), end_color=(0, 0, 255)):
    out_color = []   # 输出的颜色
    for i in range(3):
        single_color = int((end_color[i] - start_color[i]) * k + start_color[i])
        out_color.append(single_color)
    for j in range(3):
        if out_color[j] > 255:
            out_color[j] = 255
        elif out_color[j] < 0:
            out_color[j] = 0

    return out_color


def fill_contours(img, contours):
    # 创建空白的图像,用来画轮廓表
    filled_img = np.zeros_like(img)
    # num_contours = len(contours)

    dims = []   # 所有的轮廓的尺寸
    for contour in contours:
        rect = cv2.minAreaRect(contour)  # 获取最小外接矩形
        dia = rect[1][0] if rect[1][0] <= rect[1][1] else rect[1][1]  # 计算轮廓的最短尺寸,并获取直径
        dims.append(dia)
    max_dim = max(dims)  # 最大尺寸
    min_dim = min(dims)  # 最小尺寸
    range_dim = max_dim - min_dim   # 尺寸范围

    for i, contour in enumerate(contours):
        rect = cv2.minAreaRect(contour)  # 获取最小外接矩形
        dia = rect[1][0] if rect[1][0] <= rect[1][1] else rect[1][1]  # 计算轮廓的最短尺寸,并获取直径
        k = (dia - min_dim) / range_dim    # 尺寸比例
        color = get_color(k)    # 获取颜色
        cv2.drawContours(filled_img, [contour], -1, color, -1)

    return filled_img


# 读取原图,原图是RGB图
img = cv2.imread('1.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 查找轮廓
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# 填充轮廓
filled_img = fill_contours(img, contours)

cv2.imshow('Filled Contours', filled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

相关推荐
聆风吟º2 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
偷吃的耗子7 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航7 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水8 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏9 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特9 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生9 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
亓才孓11 分钟前
[Class类的应用]反射的理解
开发语言·python
feasibility.11 分钟前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
程序猿追11 分钟前
深度剖析 CANN ops-nn 算子库:架构设计、演进与代码实现逻辑
人工智能·架构