部署大模型LLM

在autodl上部署大模型

windows运行太麻烦,环境是最大问题。

选择云上服务器【西北B区 / 514机】

cpp (c++ c plus plus)
  • 纯 C/C++ 实现,无需外部依赖。
  • 针对使用 ARM NEON、Accelerate 和 Metal 框架的 Apple 芯片进行了优化。
  • 支持适用于 x86 架构的 AVX、AVX2 和 AVX512。
  • 提供 F16/F32 混合精度,并支持 2 位至 8 位整数量化。

参考:GitHub - li-plus/chatglm.cpp: C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4 & more LLMs

部署 chatglm3
复制代码
git clone --recursive https://github.com/li-plus/chatglm.cpp.git && cd chatglm.cpp

clone 上的app /mnt/workspace/chatglm.cpp

/root/chatglm.cpp

cd /mnt/workspace/chatglm.cpp

复制代码
git submodule update --init --recursive
Quantize Model 量化模型
复制代码
python3 -m pip install torch tabulate tqdm transformers accelerate sentencepiece

执行上面量化模型语句时:python3 -m pip install torch tabulate tqdm transformers accelerate sentencepiece

报错:/usr/bin/python3: No module named pip

slove: 执行下面命令:

sudo apt update

sudo apt install python3-pip

再次执行上面量化模型命令后,ok.

通过 convert 专为 GGML 格式
  • 用于 convert.py 将 ChatGLM-6B 转换为量化的 GGML 格式。要将 fp16 原始模型转换为 q4_0(量化 int4)GGML 模型,请运行:

    python3 chatglm_cpp/convert.py -i THUDM/chatglm3-6b -t q4_0 -o chatglm3-ggml.bin

在autodll机器:西北B区 / 514机

执行命令:python3 chatglm_cpp/convert.py -i /root/autodl-tmp/chatglm3-6b -t q4_0 -o chatglm3-ggml.bin

注:/root/autodl-tmp/chatglm3-6b 是模型路径

GGML model saved to chatglm3-ggml.bin 代表执行成功。

上面的执行命令解释:

python3 chatglm_cpp/convert.py -i THUDM/chatglm3-6b -t q4_0 -o chatglm3-ggml.bin

这个命令是在使用 Python 脚本将一个模型转换成另一种格式。下面是对命令的详细解释,特别是对 `THUDM/chatglm3-6b` 部分的说明:

  • `python3`:这是运行 Python 解释器的命令。它指定脚本应该使用 Python 3 执行。

  • `chatglm_cpp/convert.py`:这指定了正在执行的 Python 脚本的路径。脚本位于 `chatglm_cpp` 目录中,文件名为 `convert.py`。这个脚本很可能负责将模型从一种格式转换成另一种格式。

  • `-i THUDM/chatglm3-6b`:`-i` 选项指定了脚本将要转换的输入模型。`THUDM/chatglm3-6b` 是要被转换的模型的标识符。在 Hugging Face 模型的上下文中,`THUDM` 很可能是上传模型的组织或用户,而 `chatglm3-6b` 是特定模型的名称。这意味着脚本将在 Hugging Face 模型中心或指定的目录下查找名为 `chatglm3-6b` 的模型。

  • `-t q4_0`:`-t` 选项指定了转换的类型或版本。在这个例子中,`q4_0` 很可能代表脚本在转换模型时应该使用的特定转换目标或格式版本。

  • `-o chatglm3-ggml.bin`:`-o` 选项指定了转换后模型的输出文件。脚本将把转换后的模型写入一个名为 `chatglm3-ggml.bin` 的文件。这个文件将在转换后包含新格式的模型。

总之,命令中的 `THUDM/chatglm3-6b` 部分指定了 `convert.py` 脚本将要转换的输入模型。它表示名为 `chatglm3-6b` 的模型,与 `THUDM` 组织或用户相关联,应该根据 `-t q4_0` 选项指定的新格式进行转换,并将结果保存到 `chatglm3-ggml.bin` 文件中。

在命令行启动服务
第一步:使用 CMake 配置项目并在当前目录下创建一个名为 "build" 的构建目录
复制代码
cmake -B build
第二步:使用先前生成的构建系统文件在构建目录 "build" 中构建项目,采用并行构建和 Release 配置
复制代码
cmake --build build -j --config Release
第三步:运行
复制代码
./build/bin/main -m chatglm3-ggml.bin -p 你好
启动 web 服务
复制代码
python3 ./examples/web_demo.py -m chatglm3-ggml.bin

上面的ssh命令复制到记事本中.

ssh -p 53421 root@connect.westc1.gpuhub.com

ssh -CNg -L 7860:127.0.0.1:7860 root@connect.westc1.gpuhub.com -p 53421

密码:t1sftwFjHSxKr123

在powershell中执行命令:ssh -CNg -L 7860:127.0.0.1:7860 root@connect.westc.gpuhub.com -p 53421

注:没有任何提示,表示成功。

访问web页面,chatGLM部署成功。

相关推荐
PetterHillWater21 分钟前
基于Trae智能复杂项目重构实践
后端·aigc
G.E.N.35 分钟前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus1 小时前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师1 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子1 小时前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger2 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼2 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339863 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室4 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI4 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python