【rabbitmq的消息堆积问题】


RabbitMQ一直以来都有一个缺点,就是对于消息堆积问题的处理不好。当RabbitMQ中有大量消息堆积时,整体性能会严重下降。而目前新推出的Quorum队列以及Stream队列,目的就在于解决这个核心问题。但是这两种队列的稳定性和周边生态都还不够完善,因此,在使用RabbitMQ时,还是要非常注意消息堆积的问题。尽量让消息的消费速度和生产速度保持一致。

而如果确实出现了消息堆积比较严重的场景,就需要从数据流转的各个环节综合考虑,设计适合的解决方案。

消息生产者端:

对于生产者端,最明显的方式自然是降低消息生产的速度。但是,生产者端产生消息的速度通常是跟业务息息相关的,一般情况下不太好直接优化。但是可以选择尽量多采用批量消息的方式,降低IO频率。

RabbitMQ服务端:

RabbitMQ本身其实也在着力于提高服务端的消息堆积能力。对于消息堆积严重的队列,可以预先添加懒加载机制,或者创建Sharding分片队列,这些措施都有助于优化服务端的消息堆积能力。另外,尝试使用Stream队列,也能很好的提高服务端的消息堆积能力。

消息消费者端:

要提升消费速度最直接的方式,就是增加消费者数量了。尤其当消费端的服务出现问题,已经有大量消息堆积时。这时,可以尽量多的申请机器,部署消费端应用,争取在最短的时间内消费掉积压的消息。但是这种方式需要注意对其他组件的性能压力。

对于单个消费者端,可以通过配置提升消费者端的吞吐量。

ini 复制代码
# 单次推送消息数量 
spring.rabbitmq.listener.simple.prefetch=1 
# 消费者的消费线程数量 
spring.rabbitmq.listener.simple.concurrency=5

灵活配置这几个参数,能够在一定程度上调整每个消费者实例的吞吐量,减少消息堆积数量。

当确实遇到紧急状况,来不及调整消费者端时,可以紧急上线一个消费者组,专门用来将消息快速转录。保存到数据库或者Redis,然后再慢慢进行处理。

相关推荐
无心水39 分钟前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小北方城市网12 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
范桂飓14 小时前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
oMcLin17 小时前
如何在Debian 11上通过配置MySQL 8.0的分布式架构,提升跨区域数据同步的效率与延迟?
分布式·mysql·debian
一条咸鱼_SaltyFish18 小时前
[Day15] 若依框架二次开发改造记录:定制化之旅 contract-security-ruoyi
java·大数据·经验分享·分布式·微服务·架构·ai编程
J_liaty18 小时前
RabbitMQ面试题终极指南
开发语言·后端·面试·rabbitmq
IT 行者20 小时前
Spring Security 7 OAuth2 授权码分布式存储之Redis存储方案
redis·分布式·spring
潇凝子潇20 小时前
kafka之监控告警
分布式·kafka
Light6021 小时前
从“报告”到“能力”——构建智能化、可审计的数据治理闭环——领码 SPARK 数据质量平台白皮书
大数据·分布式·spark
maozexijr21 小时前
RabbitMQ Exchange Headers类型存在的意义?
分布式·rabbitmq