007、绘制数据plt.plot

plt.plot 是 Matplotlib 中最常用的函数之一,用于绘制线形图。该函数非常灵活,可以通过各种参数自定义图形的外观。下面将深入讲解 plt.plot 的使用,并通过多个例子展示其功能。

理论概述

plt.plot 的基本语法:

python 复制代码
plt.plot(x, y, format_string, **kwargs)
  • x:x 轴数据。
  • y:y 轴数据。
  • format_string:可选,指定线条颜色、标记和线型的格式字符串(如 'r*--')。
  • **kwargs:可选,用于设置线条属性的关键字参数。

format_string 详解

  • 颜色(color):可以使用单个字母表示颜色,如 'r'(红色)、'b'(蓝色)、'g'(绿色)、'k'(黑色)等。
  • 标记(marker):用于表示数据点的标记样式,如 '*'(星号)、'o'(圆圈)、's'(方块)等。
  • 线型(linestyle):用于指定线条样式,如 '-'(实线)、'--'(虚线)、'-.'(点划线)、':'(点线)等。

实际例子

示例1:基本线形图
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

plt.plot(x, y)
plt.title('基本线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()
示例2:使用格式字符串自定义图形
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.title('自定义格式的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例3:使用关键字参数自定义图形
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] 
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

plt.plot(x, y1, color='red', marker='*', linestyle='--', label='质数')
plt.plot(x, y2, color='blue', marker='o', linestyle='-', label='平方数')
plt.title('使用关键字参数的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例4:绘制带有误差棒的图形
python 复制代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 10)
y = np.sin(x)
yerr = 0.2

plt.errorbar(x, y, yerr=yerr, fmt='o-', ecolor='red', capsize=5)
plt.title('带有误差棒的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()
示例5:绘制多条线并使用不同的样式
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
y3 = [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.plot(x, y3, 'gs-.', label='立方数')
plt.title('多条线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例6:使用不同的线宽和标记大小
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

plt.plot(x, y1, 'r*--', linewidth=2, markersize=10, label='质数')
plt.plot(x, y2, 'bo-', linewidth=4, markersize=5, label='平方数') 
plt.title('使用不同线宽和标记大小的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例7:绘制对数坐标轴的图形
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y = [10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000]

plt.plot(x, y, 'g*-')
plt.yscale('log')
plt.title('对数坐标轴的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴(对数)')
plt.show()
示例8:自定义图例位置和样式
python 复制代码
import matplotlib.pyplot as plt

x = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.title('自定义图例位置和样式')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend(loc='upper left', fontsize='large', shadow=True)
plt.show()

其他常用参数

除了 format_string 之外,plt.plot 还支持许多其他参数,用于调整图形细节:

  • linewidth/lw:线宽。
  • markersize/ms:标记大小。
  • markeredgecolor/mec:标记边缘颜色。
  • markerfacecolor/mfc:标记填充颜色
  • markeredgewidth/mew:标记边缘线宽
  • alpha:透明度,0到1之间的浮点数
  • zorder:绘制顺序,数值越大绘制越在上层
  • label:图例标签
  • linestyle/ls:同 format_string 中的 linestyle

设置坐标轴范围和比例

通过一些特殊参数,我们还可以控制坐标轴的范围和比例尺度:

  • xlim/ylim:设置 x/y 轴的数据显示范围
  • xscale/yscale:设置 x/y 轴的刻度规则,如线性(linear)、对数(log)等
  • xticks/yticks:设置 x/y 轴应显示的刻度位置

示例:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10, 10, 100)
y = x**2

plt.plot(x, y)
plt.xlim([-5, 5])  # 设置 x 轴显示范围
plt.ylim([0, 30])  # 设置 y 轴显示范围 
plt.xscale('symlog', linthresh=0.01)  # 对数坐标轴,但在 0 附近使用线性比例
plt.xticks([-5, -1, 0, 1, 5])  # 自定义 x 轴刻度
plt.title('自定义坐标轴范围和比例')
plt.show()

多子图布局

plt.subplot可以将图形区域分割成多个子区域,每个子区域中可绘制不同的图形。它的语法是:

python 复制代码
plt.subplot(nrows, ncols, index)
  • nrows:子图的行数
  • ncols:子图的列数
  • index:子图的索引,从1开始递增

示例:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-2*np.pi, 2*np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)  # 1行2列,第1个子图
plt.plot(x, y1)
plt.title('Sine Wave')

plt.subplot(1, 2, 2)  # 1行2列,第2个子图 
plt.plot(x, y2, 'r--')
plt.title('Cosine Wave')

plt.tight_layout()
plt.show()

除了subplot之外,matplotlib还提供了subplot2gridgridspec.GridSpec等更灵活的子图布局方式。

图形输出

plt.savefig可以将当前图形保存为文件,支持多种格式如PNG、JPG、EPS、SVG等:

python 复制代码
plt.savefig('figure.png', dpi=300, bbox_inches='tight')

其中dpi设置输出分辨率,bbox_inches控制输出时是否剪裁掉图形周围的空白区域。

交互式可视化

除了静态的图像输出,Matplotlib 还支持交互式的数据可视化。我们可以使用 plt.ion() 打开交互模式,然后使用 plt.show(block=False) 不阻塞地显示图形。

在交互模式下,我们可以动态更新图形内容,实现实时数据可视化等功能。示例:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

plt.ion()  # 打开交互模式

fig, ax = plt.subplots()
ln, = ax.plot([], [], 'r-')  # 创建初始化的空线条

ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

x = np.linspace(0, 10, 100)

for i in range(100):
    y = np.sin(x + i/10)
    ln.set_data(x, y)
    fig.canvas.draw()
    fig.canvas.flush_events()

plt.ioff()  # 关闭交互模式

该示例会实时绘制一条正弦波,波形随时间推移而移动。

plt.ginput则允许用户在图形上点击鼠标进行交互,常用于标记数据点等功能。

使用 OO 接口自定义图形

Matplotlib 不仅提供了像 plt.plot 这样的快捷函数接口,也支持面向对象编程风格。通过显式创建 Figure 和 Axes 对象,并使用相应的方法,我们可以实现更细粒度的图形自定义。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-np.pi, np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# 创建 Figure 和 Axes 对象
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))

# 使用对象方法设置属性
ax1.plot(x, y1, 'b-')
ax1.set_title('Sine Wave')
ax1.set_ylim([-1.5, 1.5])

ax2.plot(x, y2, 'r--')
ax2.set_title('Cosine Wave')
ax2.set_ylim([-1.5, 1.5])

fig.tight_layout()
plt.show()

使用 OO 接口可以更灵活地控制图形元素,但代码也会变得更加冗长。在简单的场景下,使用快捷函数接口就可以了,但在需要高度自定义时,OO 接口会更加有用。

自定义 Colormap

Colormap 用于将数值数据映射到颜色值,对于可视化大量数据非常有用。Matplotlib 内置了多种 colormap,也支持自定义颜色映射。

内置的 colormap 可以通过 plt.cm.名称 访问,例如 plt.cm.viridis 是一种很流行的 colormap。

我们可以通过指定颜色列表来定义新的 colormap:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

# 自定义 colormap
cmap = plt.colormaps['viridis']
my_cmap = cmap.from_list('my_cmap', ['navy', 'royalblue', 'skyblue', 'lime'])

data = np.random.randn(30, 30)
fig, ax = plt.subplots()
im = ax.imshow(data, cmap=my_cmap)
fig.colorbar(im)
plt.show()

该示例创建了一个新的 colormap my_cmap,包含了从深蓝到浅绿的四种颜色。然后使用该 colormap 可视化二维数据。

plt.colormaps.register 还允许我们将自定义的 colormap 注册到 Matplotlib 中,以供全局访问。

自定义 Colorbar

Colorbar 可以将数据值和颜色直观地关联起来。我们可以使用 plt.colorbar 或者 fig.colorbar(im) 显示 colorbar。

也可以通过参数对 colorbar 进行自定义,如修改尺寸、位置、刻度值和标签等:

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

data = np.random.randn(30, 30)
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(data, cmap='RdBu')

# 自定义 colorbar
cbar = fig.colorbar(im, ax=ax, orientation='horizontal', shrink=0.6, pad=0.05)
cbar.set_label('Data Values', fontsize=12)
cbar.set_ticks([-2, -1, 0, 1, 2])
cbar.ax.tick_params(labelsize=10)

plt.show()

这个例子创建了一个水平放置的 colorbar,调整了它的大小和填充,并自定义了标签和刻度值。

总的来说,Matplotlib 提供了全面的工具来自定义 colormap 和 colorbar,使数据可视化更加清晰和富有吸引力。

相关推荐
databook13 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar14 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805115 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_15 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机21 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机1 天前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i1 天前
drf初步梳理
python·django
每日AI新事件1 天前
python的异步函数
python