MDPO:Conditional Preference Optimization for Multimodal Large Language Models

MDPO: Conditional Preference Optimization for Multimodal Large Language Models

相关链接:arxiv

关键字:多模态大型语言模型偏好优化条件偏好优化幻觉减少

摘要

直接偏好优化(DPO)已被证明是大型语言模型(LLM)对齐的有效方法。近期的研究尝试将DPO应用于多模态场景,但发现难以实现一致的改进。通过比较实验,我们确定了多模态偏好优化中的无条件偏好问题,即模型在优化过程中忽略了图像条件。为了解决这个问题,我们提出了MDPO,这是一个多模态DPO目标,它通过同时优化图像偏好来防止过度优先考虑仅基于语言的偏好。此外,我们引入了一个奖励锚点,强制奖励对于选定的响应为正,从而避免了它们的似然度降低------这是相对偏好优化的一个内在问题。在不同大小的两个多模态LLM和三个广泛使用的基准测试上的实验表明,MDPO有效地解决了多模态偏好优化中的无条件偏好问题,并显著提高了模型性能,特别是在减少幻觉方面。

核心方法

MDPO(多模态直接偏好优化)提出了一种针对多模态场景的改进的偏好优化方法。核心方法包括以下几个关键点:

  1. 条件偏好优化:通过引入新的偏好对来强调图像与响应之间的关系,解决模型在偏好数据中忽略视觉信息的问题。

  2. 奖励锚点:通过正则化奖励为正,保持选定响应的似然度,避免在相对偏好优化中选定响应的似然度降低。

  3. 多模态偏好数据:MDPO在优化过程中同时考虑视觉和语言特征,以确保模型能够基于图像和问题文本的条件学习响应偏好。

  4. 实验验证:通过在不同规模的多模态LLM上进行实验,验证MDPO在减少幻觉和提高模型性能方面的有效性。

  5. 性能提升:MDPO通过条件偏好优化和奖励锚点,显著提高了模型对图像的理解能力,并减少了模型响应中的语言偏差。

实验说明

实验使用了两个不同大小的多模态LLM(Bunny-v1.0-3B和LLaVA-v1.5-7B),并在三个广泛使用的基准测试(MMHalBench、Object HalBench和AMBER)上进行了评估。实验结果表明MDPO在多模态场景中的表现优于标准DPO,特别是在减少幻觉方面。

以下是实验结果的Markdown表格展示:

基准测试 指标 Bunny-v1.0-3B (DPO) Bunny-v1.0-3B (MDPO) LLaVA-v1.5-7B (DPO) LLaVA-v1.5-7B (MDPO)
MMHalBench 分数 2.28 2.96 2.14 2.39
幻觉率 0.56 0.42 0.65 0.54
Object HalBench CHAIRs 44.3 27.0 49.0 35.7
CHAIRi 7.6 4.6 13.0 9.8
AMBER 分数 74.1 67.4 55.1 52.4
覆盖率 58.9 37.7 34.5 24.5
幻觉率 4.8 2.4 2.3 2.4

实验结果数据来源于论文中的实验部分,展示了MDPO在不同基准测试上的性能提升。数据要求反映了模型在减少幻觉和提高响应质量方面的表现。

结论

MDPO是一种针对多模态场景的偏好优化方法,它通过条件偏好优化和奖励锚点,有效地提高了多模态LLM的性能,并显著减少了幻觉。实验结果表明,MDPO在不同模型规模和数据规模上均能实现性能提升,证明了其在多模态偏好优化中的有效性和潜力。

整个论文的梳理保持了连贯性,并采用了技术性语言来描述方法和结果。对于深度学习的专业术语,如"大型语言模型(LLM)"和"直接偏好优化(DPO)",保留了原文中的英文表述。

相关推荐
mwq3012317 小时前
解密“混合专家模型” (MoE) 的全部魔法
人工智能·llm
能来帮帮蒟蒻吗18 小时前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络
新加坡内哥谈技术18 小时前
从文字到世界:空间智能是人工智能的下一个前沿
人工智能
oil欧哟18 小时前
文心 5.0 来了,百度大模型的破局之战
前端·人工智能·百度·prompt
玩转AGI18 小时前
一文看懂 Agentic AI:搭建单体 vs 多智能体系统,结果出乎意料!
人工智能
ai大模型分享员18 小时前
项目实战:基于RAPTOR RAG检索技术的工业设备故障诊断系统
人工智能
MUTA️19 小时前
什么是RKNN?
人工智能
倚栏听风雨19 小时前
2、Gemini里 交互模式和非交互模式区别
人工智能
illuspas19 小时前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama
illuspas19 小时前
MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
人工智能·gpt·llama