Flink Kafka获取数据写入到MongoDB中 样例

简述

Apache Flink 是一个流处理和批处理的开源框架,它允许从各种数据源(如 Kafka)读取数据,处理数据,然后将数据写入到不同的目标系统(如 MongoDB)。以下是一个简化的流程,描述如何使用 Flink 从 Kafka 读取数据并保存到 MongoDB:

1、环境准备

  • 安装并配置 Apache Flink。
  • 安装并配置 Apache Kafka。
  • 安装并配置 MongoDB。
  • 创建一个 Kafka 主题,并发送一些测试数据。
  • 确保 Flink 可以连接到 Kafka 和 MongoDB。

部署参考:

1、flink:Flink 部署执行模式

2、kafka:Flink mongo & Kafka

3、mongoDb:mongo副本集本地部署

2. 添加依赖

在Flink 项目中,需要添加 Kafka 和 MongoDB 的连接器依赖。对于 Maven 项目,可以在 pom.xml 文件中添加相应的依赖。

对于 Kafka,需要添加 Flink Kafka Connector 的依赖。

对于 MongoDB,需要添加 Flink MongoDB Sink 的依赖。

bash 复制代码
* 创建一个 Flink 作业,使用 Flink 的 `FlinkKafkaConsumer` 从 Kafka 主题中读取数据。  
* 对读取的数据进行必要的转换或处理。  
* 使用 MongoDB 的 Java 驱动程序或第三方库将处理后的数据写入 MongoDB。

使用 Flink 的命令行工具或 IDE 运行 Flink 作业。确保 Kafka 和 MongoDB 正在运行,并且 Flink 可以访问它们。

参考:Flink 命令行提交、展示和取消作业

5. 监控和调试

使用 Flink 的 Web UI 或其他监控工具来监控作业。如果出现问题,检查日志并进行调试。

6. 优化和扩展

根据需求和数据量,优化 Flink 作业的性能和可扩展性。这可能包括调整并行度、增加资源、优化数据处理逻辑等。

代码

java 复制代码
package com.wfg.flink.connector.kafka;

import com.mongodb.client.model.InsertOneModel;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.connector.mongodb.sink.MongoSink;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.bson.BsonDocument;

import static com.wfg.flink.connector.constants.Constants.KAFKA_BROKERS;
import static com.wfg.flink.connector.constants.Constants.TEST_TOPIC_PV;

/**
 * @author wfg
 */
public class KafkaToWriteMongo {
    public static void main(String[] args) throws Exception {
        // 1. 设置 Flink 执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers(KAFKA_BROKERS)
                .setTopics(TEST_TOPIC_PV)
                .setGroupId("my-test-topic-pv")
                .setStartingOffsets(OffsetsInitializer.latest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStreamSource<String> rs = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
        // 创建RollingFileSink
        MongoSink<String> sink = MongoSink.<String>builder()
                .setUri("mongodb://root:123456@127.0.0.1:27017,127.0.0.1:27018,127.0.0.1:27019/admin?replicaSet=rs0&authSource=admin")
                .setDatabase("sjzz")
                .setCollection("TestMongoPv")
                .setMaxRetries(3)
//                .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
                .setSerializationSchema(
                        (input, context) -> {
                            System.out.println(input);
                            return new InsertOneModel<>(BsonDocument.parse(input));
                        })
                .build();
        rs.sinkTo(sink);
        // 6. 执行 Flink 作业
        env.execute("Kafka Flink Job");
    }
}
相关推荐
一晌小贪欢1 小时前
Python爬虫第10课:分布式爬虫架构与Scrapy-Redis
分布式·爬虫·python·网络爬虫·python爬虫·python3
A接拉起0072 小时前
如何丝滑迁移 Mongodb 数据库
后端·mongodb·架构
摇滚侠5 小时前
Spring Boot3零基础教程,监听 Kafka 消息,笔记78
spring boot·笔记·kafka
摇滚侠8 小时前
Spring Boot3零基础教程,Kafka 小结,笔记79
spring boot·笔记·kafka
沐浴露z9 小时前
一篇文章详解Kafka Broker
java·分布式·kafka
pythonpioneer11 小时前
Ray Tune 强大的分布式超参数调优框架
分布式·其他
笨蛋少年派11 小时前
Hadoop High Availability 简介
大数据·hadoop·分布式
一只小透明啊啊啊啊13 小时前
Java电商项目中的概念: 高并发、分布式、高可用、微服务、海量数据处理
java·分布式·微服务
兜兜风d'1 天前
RabbitMQ 七种工作模式全解析
分布式·rabbitmq