colmap如何利用GPS信息or如何对齐给定坐标系

model_aligner 工具概述

model_aligner 是Colmap中用于地理配准的工具,它能够将重建的三维模型与地理坐标系对齐。此工具使用RANSAC算法来估计模型与目标坐标系之间的3D相似变换。

输入
  • 模型路径 (--input_path): 指向包含重建模型的文件夹。
  • 参考图像路径或数据库 (--ref_images_path--database_path): 提供包含地理坐标的图像列表或数据库。
  • 地理坐标类型 (--ref_is_gps): 指定坐标是GPS坐标还是笛卡尔坐标。
  • 坐标转换类型 (--alignment_type): 指定坐标转换的类型,如ECEF或ENU。
输出
  • 对齐后的模型路径 (--output_path): 保存地理配准后的模型。
  • 3D相似变换: 模型根据此变换与地理坐标系对齐。
参数
  • 鲁棒对齐 (--robust_alignment): 使用RANSAC算法来鲁棒估计变换。
  • RANSAC误差阈值 (--robust_alignment_max_error): RANSAC中使用的误差阈值。

RANSAC算法原理

RANSAC(Random Sample Consensus)是一种迭代方法,用于在包含异常值的数据集中估计数学模型参数。

  • 随机抽样: 从数据集中随机选择数据点。
  • 模型拟合: 使用选中的数据点来拟合模型。
  • 一致性检查: 评估其他数据点与模型的一致性。
  • 迭代过程: 重复抽样和拟合过程。
  • 最佳模型选择: 选择具有最多内点的模型。

特殊情况:Manhattan world alignment

Manhattan world alignment 是一种特殊的对齐方法,适用于具有明显垂直和水平结构特征的场景。

  • 曼哈顿世界假设: 场景由与坐标轴对齐的平面组成。
  • 消失点检测: 通过图像中的消失点来确定重力轴和主要水平轴。
  • 对齐过程: 自动调整坐标轴以符合曼哈顿世界假设。
相关推荐
Danceful_YJ1 天前
33.Transformer架构
人工智能·pytorch·深度学习
美狐美颜SDK开放平台1 天前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩1 天前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly1 天前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962181 天前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉1 天前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会1 天前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China1 天前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
StarPrayers.1 天前
自蒸馏学习方法
人工智能·算法·学习方法
咚咚王者1 天前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python