colmap如何利用GPS信息or如何对齐给定坐标系

model_aligner 工具概述

model_aligner 是Colmap中用于地理配准的工具,它能够将重建的三维模型与地理坐标系对齐。此工具使用RANSAC算法来估计模型与目标坐标系之间的3D相似变换。

输入
  • 模型路径 (--input_path): 指向包含重建模型的文件夹。
  • 参考图像路径或数据库 (--ref_images_path--database_path): 提供包含地理坐标的图像列表或数据库。
  • 地理坐标类型 (--ref_is_gps): 指定坐标是GPS坐标还是笛卡尔坐标。
  • 坐标转换类型 (--alignment_type): 指定坐标转换的类型,如ECEF或ENU。
输出
  • 对齐后的模型路径 (--output_path): 保存地理配准后的模型。
  • 3D相似变换: 模型根据此变换与地理坐标系对齐。
参数
  • 鲁棒对齐 (--robust_alignment): 使用RANSAC算法来鲁棒估计变换。
  • RANSAC误差阈值 (--robust_alignment_max_error): RANSAC中使用的误差阈值。

RANSAC算法原理

RANSAC(Random Sample Consensus)是一种迭代方法,用于在包含异常值的数据集中估计数学模型参数。

  • 随机抽样: 从数据集中随机选择数据点。
  • 模型拟合: 使用选中的数据点来拟合模型。
  • 一致性检查: 评估其他数据点与模型的一致性。
  • 迭代过程: 重复抽样和拟合过程。
  • 最佳模型选择: 选择具有最多内点的模型。

特殊情况:Manhattan world alignment

Manhattan world alignment 是一种特殊的对齐方法,适用于具有明显垂直和水平结构特征的场景。

  • 曼哈顿世界假设: 场景由与坐标轴对齐的平面组成。
  • 消失点检测: 通过图像中的消失点来确定重力轴和主要水平轴。
  • 对齐过程: 自动调整坐标轴以符合曼哈顿世界假设。
相关推荐
冬奇Lab8 小时前
一天一个开源项目(第30篇):banana-slides - 基于 nano banana pro 的原生 AI PPT 生成应用
人工智能·开源·aigc
冬奇Lab8 小时前
Plugin 扩展实战:增强 Claude Code 的能力
人工智能·ai编程·claude
大好人ooo8 小时前
企业级LLM评估与测试
人工智能
coding者在努力8 小时前
LangChain简介,最直白的介绍
人工智能·python·语言模型·langchain
福大大架构师每日一题9 小时前
dify 1.13.0——Human-in-the-Loop与工作流执行架构全面升级,释放AI与人的协作潜力
人工智能·架构
文艺倾年9 小时前
【强化学习&SWE】如何无容器化进行强化学习训练
人工智能·分布式·大模型
ZhengEnCi9 小时前
06. Embedding模型与向量化
人工智能
人机与认知实验室9 小时前
人类智能中依然存在还未被发现的新机制
人工智能
Dr.AE9 小时前
AI+教育行业分析报告
大数据·人工智能·教育电商
永无魇足9 小时前
感知器算法
人工智能