【机器学习】第10章 聚类算法

一、概念

1.聚类

(1)是无监督学习,其实无监督学习就是无中生有,不给你标准答案(标签啊啥的),然后让你自己来。

(2)聚类就是这样,让机器自己根据相似特征把相似的东西放到一块。

(3)聚类就是将集合划分成由类(相)似的对象组成的多个类的过程。

聚类分析是研究(样品或指标)分类问题的一种统计分析方法。

(4)概念:

聚类是把各不相同的个体分割为有更多相似性子集合的工作,聚类生成的子集合称为簇(cluster)。

(5)聚类的要求

生成的簇内部的任意两个对象之间具有较高的相似度,于不同簇的两个对象间具有较高的相异度。

其中度量就用前面学习的欧氏距离,曼哈顿距离等进行测量。

(6)聚类的好坏不存在绝对标准

如扑克牌可以按花色分,也可以按数字分,具体情况具体分析。

(7)聚类与分类的区别:

聚类所要求划分的类是未知的,是无意识的,一般把它理解为无监督学习。

而分类算法是有训练样本的,属于监督学习。

(下面图,先是分类,后是聚类,可以很明显的看出标签的提示)

2.K-Means聚类算法

由聚类思想脱胎而生的nb算法之一。

(1)其中K代表要求划分成K个簇,means是均值的意思,也就是说每个簇的中心点是该簇中所有点的均值。

(2)保证每个簇必须包含一个对象,也要保证每个对象有且仅属于一个簇。

(3)流程:

a.随机选择k个点作为初始的聚类中心,注意这些点它可以是样本得到点,也可以不是。

b.对于剩下的点,根据其与聚类中心的距离,将其归入最近的族。

c.对每个族,计算所有点的均值作为新的聚类中心,注意这个点是产生出来的。

d.重复2、3直到聚类中心不再发生改变

(整个过程类似蠕动,中心点不断蠕动,直到发现好的地方)

(4)局限性:

a.图像过于抽象,平均值不靠谱

b.数据量过大是,收敛缓慢

(5)聚类分析的度量指标

a.外部指标:指用事先指定的聚类模型作为参考来评判聚类结果的好坏

b.内部指标:是指不借助任何外部参考,只用参与聚类的样本评判聚类结果好坏

二、习题

多选题:

  1. 聚类的宗旨是(BD)

A、类内距离最大化

B、类间距离最大化

C、类间距离最小化

D、类内距离最小化

判断题:

  1. 聚类的目的是对样本集合进行自动分类,以发掘数据中隐藏的信息、结构,从而发现可能的商业价值。 ( T)
相关推荐
HAREWORK_FFF13 小时前
近几年,非技术岗转向AI岗位的现实可能性
人工智能
weixin_66813 小时前
深度分析:多模态、全模态、VLM、ASR、TTS、STT、OCR- AI分析分享
人工智能
LeonDL16813 小时前
基于YOLO11深度学习的衣物识别系统【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】
人工智能·python·pyqt5·yolo数据集·yolo11数据集·yolo11深度学习·衣物识别系统
犀思云13 小时前
企业总部网络全球化扩张:利用FusionWAN NaaS 破解“网络成本瓶颈”
网络·人工智能·机器人·智能仓储·专线
Data_Journal13 小时前
如何使用 Python 解析 JSON 数据
大数据·开发语言·前端·数据库·人工智能·php
陈天伟教授13 小时前
人工智能应用- 语言理解:09.大语言模型
人工智能·语言模型·自然语言处理
ASS-ASH13 小时前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
老百姓懂点AI13 小时前
[微服务] Istio流量治理:智能体来了(西南总部)AI调度官的熔断策略与AI agent指挥官的混沌工程
人工智能·微服务·istio
Daydream.V13 小时前
逻辑回归实例问题解决(LogisticRegression)
算法·机器学习·逻辑回归
芝士爱知识a13 小时前
2026年教资备考数字化生存指南:主流App深度测评与AI技术应用分析
人工智能·教资·ai教育·教育技术·教资面试·app测评·2026教资