【机器学习】第10章 聚类算法

一、概念

1.聚类

(1)是无监督学习,其实无监督学习就是无中生有,不给你标准答案(标签啊啥的),然后让你自己来。

(2)聚类就是这样,让机器自己根据相似特征把相似的东西放到一块。

(3)聚类就是将集合划分成由类(相)似的对象组成的多个类的过程。

聚类分析是研究(样品或指标)分类问题的一种统计分析方法。

(4)概念:

聚类是把各不相同的个体分割为有更多相似性子集合的工作,聚类生成的子集合称为簇(cluster)。

(5)聚类的要求

生成的簇内部的任意两个对象之间具有较高的相似度,于不同簇的两个对象间具有较高的相异度。

其中度量就用前面学习的欧氏距离,曼哈顿距离等进行测量。

(6)聚类的好坏不存在绝对标准

如扑克牌可以按花色分,也可以按数字分,具体情况具体分析。

(7)聚类与分类的区别:

聚类所要求划分的类是未知的,是无意识的,一般把它理解为无监督学习。

而分类算法是有训练样本的,属于监督学习。

(下面图,先是分类,后是聚类,可以很明显的看出标签的提示)

2.K-Means聚类算法

由聚类思想脱胎而生的nb算法之一。

(1)其中K代表要求划分成K个簇,means是均值的意思,也就是说每个簇的中心点是该簇中所有点的均值。

(2)保证每个簇必须包含一个对象,也要保证每个对象有且仅属于一个簇。

(3)流程:

a.随机选择k个点作为初始的聚类中心,注意这些点它可以是样本得到点,也可以不是。

b.对于剩下的点,根据其与聚类中心的距离,将其归入最近的族。

c.对每个族,计算所有点的均值作为新的聚类中心,注意这个点是产生出来的。

d.重复2、3直到聚类中心不再发生改变

(整个过程类似蠕动,中心点不断蠕动,直到发现好的地方)

(4)局限性:

a.图像过于抽象,平均值不靠谱

b.数据量过大是,收敛缓慢

(5)聚类分析的度量指标

a.外部指标:指用事先指定的聚类模型作为参考来评判聚类结果的好坏

b.内部指标:是指不借助任何外部参考,只用参与聚类的样本评判聚类结果好坏

二、习题

多选题:

  1. 聚类的宗旨是(BD)

A、类内距离最大化

B、类间距离最大化

C、类间距离最小化

D、类内距离最小化

判断题:

  1. 聚类的目的是对样本集合进行自动分类,以发掘数据中隐藏的信息、结构,从而发现可能的商业价值。 ( T)
相关推荐
程序猿炎义14 分钟前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd27 分钟前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan40 分钟前
阿里云多模态大模型岗三面面经
人工智能
THMAIL42 分钟前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy43 分钟前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通1 小时前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio1 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word
山烛1 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
THMAIL2 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归