SQL优化选对执行计划,查询速度提升1000倍 | OceanBase 应用实践

作者:爱可生数据库高级工程师任仲禹,擅长故障分析和性能优化。

本文通过一个案例,分享使用OceanBase时,SQL走错执行计划,而导致慢SQL的排查方法论。

案例背景

在使用OceanBase 3.2.3 版本的过程中,项目组反映某个 SELECT 语句在指定时间内的查询响应速度异常缓慢,其耗时远超正常情况的1000倍以上。具体细节如下:

  • 慢 SELECT

    SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31' ;

  • 关键表结构、记录数信息如下

    -- 脱敏处理
    show create table renzy\G
    *************************** 1. row ***************************
    Table: renzy
    Create Table: CREATE TABLE renzy (
    ID char(18) COLLATE utf8mb4_bin NOT NULL COMMENT ,
    ...
    ACCT_NO char(40) COLLATE utf8mb4_bin NOT NULL COMMENT ,
    ...
    ACCTG_DT date DEFAULT NULL COMMENT ,
    ...
    PRIMARY KEY (ID),
    ...
    KEY renzy_I2 (ACCT_NO) BLOCK_SIZE 16384 LOCAL,
    ...
    KEY renzy_I5 (ACCTG_DT, ENQ_INST_CD, BLON_INST_CD, EMRG_STPY_SRC_CD) BLOCK_SIZE 16384 LOCAL,
    ...
    ) DEFAULT CHARSET = utf8mb4;
    1 row in set (0.01 sec)

    MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882');
    +---------+
    | TOT_CNT |
    +---------+
    | 1 |
    +---------+
    1 row in set (0.02 sec)

    MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31';
    +----------+
    | TOT_CNT |
    +----------+
    | 25432155 |
    +----------+
    1 row in set (12.42 sec)

    MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy;
    +----------+
    | TOT_CNT |
    +----------+
    | 25435024 |
    +----------+
    1 row in set (10.65 sec)

排查过程

正常执行不慢

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();
+---------+
| TOT_CNT |
+---------+
|       1 |
+---------+
1 row in set (0.02 sec)

以下是执行计划,从中可见,索引I2是最高效的选择,它在进行等值匹配时仅需要执行一次回表操作。

*************************** 1. row ***************************
Query Plan: ========================================================
|ID|OPERATOR        |NAME               |EST. ROWS|COST|
--------------------------------------------------------
|0 |LIMIT           |                   |1        |92  |
|1 | SCALAR GROUP BY|                   |1        |92  |
|2 |  TABLE SCAN    |renzy(renzy_I2)|1        |92  |
========================================================
...
Outline Data:
-------------------------------------
  /*+
      BEGIN_OUTLINE_DATA
      INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2")
      END_OUTLINE_DATA
  */
...
renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:1, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy], estimation info[table_id:1105009185965290, (table_type:1, version:0-1699898410195654-1699898410195654, logical_rc:1, physical_rc:1), (table_type:7, version:1699898401860480-1699898401860480-1699898433101378, logical_rc:0, physical_rc:0), (table_type:7, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:5, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:0, version:1699905915658079-1699905915658079-9223372036854775807, logical_rc:0, physical_rc:0)]
...

通过 OCP 的 SQL 诊断获取慢 SQL 的 plan_id,检查慢 SQL 实际命中的 plan。

MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7288229 \G                                                                         
*************************** 1. row ***************************
...
              plan_id: 7288229
...
            statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
            query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000
       special_params: 2000
          param_infos: {1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,17},{1,0,0,-1,17}
             sys_vars: 45,45,12582912,2,4,1,0,0,32,3,1,0,1,1,0,10485760,1,1,0,1,BINARY,BINARY,AL32UTF8,AL16UTF16,BYTE,FALSE,1,100,64,200,0,13,NULL,1,1,1,1
            plan_hash: 10428103352368081688
      first_load_time: 2023-11-14 10:14:11.578250
       schema_version: 1699927892190832
       merged_version: 287
     last_active_time: 2023-11-14 11:04:58.127020
         avg_exe_usec: 35858760
     slowest_exe_time: 2023-11-14 11:04:58.127020
     slowest_exe_usec: 171575101
           slow_count: 2
            hit_count: 7
            plan_size: 81984
           executions: 8
           disk_reads: 1136285
        direct_writes: 0
          buffer_gets: 18067948
application_wait_time: 0
concurrency_wait_time: 0
    user_io_wait_time: 0
       rows_processed: 8
         elapsed_time: 286870087
             cpu_time: 229807460
         large_querys: 2
 delayed_large_querys: 1
    delayed_px_querys: 0
      outline_version: 0
           outline_id: -1
         outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA*/
....
1 row in set (0.09 sec)

MySQL [oceanbase]> select * from oceanbase.gv$plan_cache_plan_explain where tenant_id=1005 and port=2882 and plan_id=7288229 and ip='12.240.26.70'\G
....
PLAN_LINE_ID: 2
    OPERATOR:   PHY_TABLE_SCAN
        NAME: renzy(renzy_I5)
        ROWS: 0
        COST: 91
    PROPERTY: table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, avaiable_index_name[renzy_I2,renzy_I5]
...

上述结果的关键信息如下

1.query_sql :为该plan第一次执行时的SQL语句。

2.first_load_time :缓存该plan并hit的时间。

3.slowest_exe_usec :该计划的最慢耗时。

4.outline_id : 是否命中了绑定的outline,-1即未命中。

5.statement :参数化后的SQL语句。

6.name : 该plan走的索引。

分析下第一次的SQL为啥要走 I5 索引

通过下面执行计划和执行耗时可知,第一次执行的语句因为字段 ACCTG_DT 检索不到数据,所以走 I5 效率最高。

MySQL > explain extended select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000\G
*************************** 1. row ***************************
Query Plan: ========================================================
|ID|OPERATOR        |NAME               |EST. ROWS|COST|
--------------------------------------------------------
|0 |LIMIT           |                   |1        |92  |
|1 | SCALAR GROUP BY|                   |1        |92  |
|2 |  TABLE SCAN    |renzy(renzy_I5)|0        |92  |
========================================================
Outline Data:
-------------------------------------
  /*+
      BEGIN_OUTLINE_DATA
      INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5")
      END_OUTLINE_DATA
  */
renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy]

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       0 |
+---------+
1 row in set, 2 warnings (0.02 sec)

分析下后续SQL为何不淘汰该plan

我们知道,SQL查询并不需要每次生成查询计划,因为这样涉及到硬解析等耗费性能的操作,所以默认每次会先查询 Plan Cache (硬解析操作包含词法/语法/语义解析,优化器统计信息查询等步骤,参考下图)。

本案例中,后续的SQL命中该 Plan 就可以理解,因为要走 I5 索引,range太大基本为全索引扫描,所以耗时太慢。,

ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31'

什么时候淘汰这个计划呢?

// 关键代码段如下(410bp1社区版,这里的逻辑和323bp8企业版类似,企业版代码不便贴出)
if (sample_count < SLOW_QUERY_SAMPLE_SIZE) {
        // do nothing when query execution samples are not enough
      } else {
        if (stat_.cpu_time_ <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * stat_.execute_times_) {
        // do nothing for fast query
        } else if (is_plan_unstable(sample_count, sample_exec_row_count, sample_exec_usec)) {
          set_is_expired(true);
        }
        ATOMIC_STORE(&(stat_.sample_times_), 0);
      }
    }

bool ObPhysicalPlan::is_plan_unstable(const int64_t sample_count,
                                      const int64_t sample_exec_row_count,
                                      const int64_t sample_exec_usec)
{
  bool bret = false;
  if (sample_exec_usec <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * sample_count) {
    // sample query is fast query in the average
  } else if (OB_PHY_PLAN_LOCAL == plan_type_) {
    int64_t first_query_range_rows = ATOMIC_LOAD(&stat_.first_exec_row_count_);
    if (sample_exec_row_count <= SLOW_QUERY_ROW_COUNT_THRESOLD * sample_count) {
      // the sample query does not accesses too many rows in the average
    } else if (sample_exec_row_count / sample_count > first_query_range_rows * 10) {
      // the average sample query range row count increases great
      bret = true;
      LOG_INFO("local query plan is expired due to unstable performance",
               K(bret), K(stat_.execute_times_),
               K(first_query_range_rows), K(sample_exec_row_count), K(sample_count));
    }
  } else if ( OB_PHY_PLAN_DISTRIBUTED == plan_type_) {
    int64_t first_exec_usec = ATOMIC_LOAD(&stat_.first_exec_usec_);
    if (sample_exec_usec / sample_count > first_exec_usec * 2) {
      // the average sample query execute time increases great
      bret = true;
      LOG_INFO("distribute query plan is expired due to unstable performance",
               K(bret), K(stat_.execute_times_), K(first_exec_usec),
               K(sample_exec_usec), K(sample_count));
    }
  } else {
    // do nothing
  }
  return bret;
}

这里淘汰一个 Plan 需要满足的条件有2个:

  • sample_count < SLOW_QUERY_SAMPLE_SIZE)
  • sample_exec_row_count / sample_count > first_query_range_rows * 10

这里的 SLOW_QUERY_SAMPLE_SIZE 是常量,OB410的定义是 20;sample_count(采样次数)实质为Plan的SQL执行次数。

static const int64_t SLOW_QUERY_SAMPLE_SIZE = 20; // smaller than ObPlanStat::MAX_SCAN_STAT_SIZE

结合上下文代码来看,意思是满足如下情况就会淘汰Plan:

  • 命中该Plan的SQL执行大于等于20次。
  • (执行的SQL扫描总行数 / 执行次数) 大于 (第一次SQL执行扫描的行数 * 10)

复现以验证

1.清空 plan cache,执行业务第一次生成 Plan 的 SQL。

MySQL > alter system flush plan cache;
Query OK, 0 rows affected (0.13 sec)

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       0 |
+---------+
1 row in set, 2 warnings (0.02 sec)

2.执行业务 SQL,复现慢的情况。

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       1 |
+---------+
1 row in set (2 min 51.61 sec)

MySQL > select last_trace_id();
+-----------------------------------+
| last_trace_id()                   |
+-----------------------------------+
| YB420CF01A46-0006009AD91C51ED-0-0 |
+-----------------------------------+
1 row in set (0.04 sec)

MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AD91C51ED-0-0'\G                                                                                                         ...
               TRACE_ID: YB420CF01A46-0006009AD91C51ED-0-0
...
                 SQL_ID: 2B53F4C1C330C2C089C7518CD71D667A
              QUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
...
           ELAPSED_TIME: 171575101
...
           EXECUTE_TIME: 171574843
...
MEMSTORE_READ_ROW_COUNT: 25416176
 SSSTORE_READ_ROW_COUNT: 50832349
...

这里通过 sql_audit 可以观测到重要的信息:

  • ELAPSED_TIME : 执行耗时。

  • MEMSTORE_READ_ROW_COUNT / SSSTORE_READ_ROW_COUNT : 这条SQL扫描的行数。

    MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7289113 \G
    *************************** 1. row ***************************
    ...
    sql_id: 2B53F4C1C330C2C089C7518CD71D667A
    ...
    statement: select * from (SELECT COUNT() AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
    query_sql: select * from (SELECT COUNT(
    ) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000
    ...
    outline_id: -1
    outline_data: /+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA/
    ...

通过 plan_cache_plan_stat 可看到这条SQL命中了第一次SQL执行时生成的 Plan(不符合预期)。

3.继续通过脚本执行多次。

#!/bin/bash
for i in `seq 1 30`
do
echo ">>> do  $i"
mysql -h12.240.68.36 -P3306 -uroot@tgabsua2g00#obcdcbsuat01 -pOceanBase_123# -Dgabsdb -A -c -NBe "select now();select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();select now();"
done

# ./1.sh
...
>>> do  17       # 耗时 2分钟27s 命中
2023-11-14 16:05:36
1
YB420CF01A46-0006009B016C66EE-0-0
2023-11-14 16:08:03
>>> do  18       # 耗时 2min12s  命中
2023-11-14 16:08:03
1
YB420CF01A46-0006009AFF8FF46D-0-0
2023-11-14 16:10:15
>>> do  19       # 耗时 2min36s  命中
2023-11-14 16:10:15
1
YB420CF01A46-0006009B012FF1D0-0-0
2023-11-14 16:12:51
>>> do  20        # 耗时 1s内     未命中,恢复正常
2023-11-14 16:12:51
1
YB420CF01A46-0006009AFEBDA7C6-0-0
2023-11-14 16:12:51
>>> do  21
2023-11-14 16:12:51
1
YB420CF01A46-0006009B016F1561-0-0
2023-11-14 16:12:52
...

可以观察到,命中该 Plan 的SQL 执行次数大于 20 次(含手工执行)后,该"不符合预期的" Plan 被淘汰。

  1. 再次执行的SQL的 sql_audit 和 plan_cache_plan_stat,可看到重新生成了 Plan。

    MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AFEBDA7C6-0-0'\G
    SQL_ID: 2B53F4C1C330C2C089C7518CD71D667A
    QUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
    ...
    ELAPSED_TIME: 207
    PLAN_ID: 7334178
    ...
    MEMSTORE_READ_ROW_COUNT: 1
    SSSTORE_READ_ROW_COUNT: 2

    MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7334178 \G
    *************************** 1. row ***************************
    ...
    plan_id: 7334178
    sql_id: 2B53F4C1C330C2C089C7518CD71D667A
    ...
    statement: select * from (SELECT COUNT() AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000
    query_sql: select * from (SELECT COUNT(
    ) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
    ...
    first_load_time: 2023-11-14 16:12:51.547434
    ...
    slowest_exe_time: 2023-11-14 16:12:51.547618
    slowest_exe_usec: 4139
    ...
    elapsed_time: 8279
    ...
    outline_id: -1
    outline_data: /+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2") END_OUTLINE_DATA/
    ...

5.obs日志关键信息

#grep YB420CF01A46-0006009B012FF1D0-0-0 observer.log.20231114161*|less
observer.log.20231114161017:[2023-11-14 16:10:15.813150] INFO  [SQL] ob_sql.cpp:1769 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=17] [dc=0] It is a large query, need delay, do not need disconnect(avg_process_time=123860984, exec_cnt=20, large_query_threshold=5000000, plan->get_plan_id()=7328133, ret=-4023)
observer.log.20231114161017:[2023-11-14 16:10:15.813208] TRACE [TRACE]obmp_base.cpp:156 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=18] [dc=0] [packet retry query](TRACE=begin_ts=1699949415813080 2023-11-14 08:10:15.813080|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:13, receive_ts:1699949415813066, enqueue_ts:1699949415813067, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=3 sid:3221784053, tenant_id:1005|[parse_begin] u=10 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[process_end] u=85 run_ts:1699949415813082|total_timeu=98)
observer.log.20231114161302:[2023-11-14 16:12:51.412696] INFO  [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)
observer.log.20231114161302:[2023-11-14 16:12:51.412725] WARN  [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=11] [dc=0] long time to hold one guard(schema_mgr=0x7ee87934c610, tenant_id=1, version=1697523399752200, cur_timestamp=1699949571412714, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
observer.log.20231114161302:[2023-11-14 16:12:51.412738] WARN  [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=8] [dc=0] long time to hold one guard(schema_mgr=0x7edddba39170, tenant_id=1005, version=1699931135472584, cur_timestamp=1699949571412734, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
observer.log.20231114161302:[2023-11-14 16:12:51.412798] TRACE [TRACE]obmp_base.cpp:147 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=5] [dc=0] [slow query](TRACE=begin_ts=1699949415813229 2023-11-14 08:10:15.813229|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:162, receive_ts:1699949415813066, enqueue_ts:1699949415813225, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=2 sid:3221784053, tenant_id:1005|[parse_begin] u=6 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[exec_begin] u=29 arg1:false, end_trans_cb:false, plan_id:7328133|[do_open_plan_begin] u=8 |[sql_start_stmt_begin] u=1 |[sql_start_participant_begin] u=5 |[storage_table_scan_begin] u=56 |[storage_table_scan_end] u=116 |[get_row] u=155437570 |[result_set_close] u=161554 |[close_plan_begin] u=0 |[revert_scan_iter] u=96 |[end_participant_begin] u=3 |[start_end_stmt] u=1 |[affected_rows] u=0 affected_rows:-1|[store_found_rows] u=1 found_rows:0, return_rows:1|[auto_end_plan_begin] u=0 |[process_end] u=86 run_ts:1699949415813230|total_timeu=155599534)

第21次执行的SQL的关键日志信息:

[2023-11-14 16:12:51.412696] INFO  [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)

由该日志,关键信息如下:

  1. sample_exec_row_count=1525906500

  2. sample_count=20

  3. first_query_range_rows=0

结合代码可知该结果满足 Plan 淘汰条件,从而 plan expire。

sample_exec_row_count / sample_count > first_query_range_rows * 10

1525906500 / 20  > 0 * 10  
// 这里 1525906500 的结果,不难得知,是单次SQL扫描行数 * 20. 
// 即(25416176 + 50832349) * 20 = 1524970500 约等于 1525906500 
 MEMSTORE_READ_ROW_COUNT: 25416176
 SSSTORE_READ_ROW_COUNT: 50832349

结论

1.本例主要是想分享SQL走错 Plan 而SQL慢的排查方法论,问题原因还是比较简单,重点是和大家分享处理OB遇到类似问题的思路等。

2.本例问题在当前OB 323版本中没有好的优化方式,给到的建议是:

  • 如果 I5 索引业务上未使用场景,则删除。
  • 绑定 outline,使该SQL走 I2 索引。

3.分享下OB中 Plan Cache 清理策略:

  • 手工清理

    -- 租户内执⾏,清除当前租户中所有 Plan Cache。⽣产慎⽤。
    ALTER SYSTEM FLUSH PLAN CACHE;
    -- sys租户下执⾏,不同粒度。
    ALTER SYSTEM FLUSH PLAN CACHE TENANT = 'T_MySQL';
    ALTER SYSTEM FLUSH PLAN CACHE sql_id='B601070DFC14CB85FDA3766A69A9E1B3'
    databases='myob1' tenant='tenant1' GLOBAL;

  • 自动清理 ob_plan_cache_percentage 参数控制 Plan Cache占用租户内存的百分比。 本例中提到

  1. sample_count < SLOW_QUERY_SAMPLE_SIZE) :命中该Plan的SQL执行大于等于20次。

2.sample_exec_row_count / sample_count > first_query_range_rows * 10 :(执行的SQL扫描总行数 / 执行次数) 大于 (第一次SQL执行扫描的行数 * 10)

相关推荐
OceanBase数据库官方博客1 天前
半连接转内连接 | OceanBase SQL 查询改写
sql·oceanbase·分布式数据库
OceanBase数据库官方博客1 天前
解析在OceanBase创建分区的常见问题|OceanBase 用户问题精粹
oceanbase·分布式数据库·分区
OceanBase数据库官方博客1 天前
半连接转内连接规则的原理与代码解析 |OceanBase查询优化
sql·oceanbase·分布式数据库
IT培训中心-竺老师4 天前
OceanBase 数据库分布式与集中式 能力
数据库·分布式·oceanbase
靖顺4 天前
【OceanBase 诊断调优】—— OceanBase 数据库网络速率配置方案
网络·数据库·oceanbase
尚雷558012 天前
OceanBase 社区版 4.0 离线方式升级bp1至bp2 指南(含避坑总结)
oceanbase
五月高高12 天前
Linux部署oceanbase
linux·oceanbase
靖顺15 天前
【OceanBase 诊断调优】—— 统计信息自动收集超时导致的估行不准 SQL 选择错索引
数据库·sql·oceanbase
it界的哈士奇16 天前
Oceanbase离线集群部署
oceanbase