机器学习课程复习——主成分分析

Q:主成分分析的步骤?

1.数据预处理:对给定数据进行规范化(中心化处理),使得每一变量的平均值为0,方差为1

2.对数据进行正交变换:

原来由线性相关变量表示的数据通过正交变换变成由若干个线性无关的新变量表示的数据,新变量是可能的正交变换中变量的方差的和最大的,方差表示在新变量上信息的大小

(1)计算协方差矩阵:协方差矩阵描述了不同特征之间的相互关系

(2)求解特征值和特征向量:特征值表示对应特征向量方向上的方差大小,特征向量则定义了新的坐标轴方向

(3)选择主成分:根据特征值的大小选择前k个最大的特征值对应的特征向量作为主成分

(4)数据降维:将原始数据投影到选定的主成分构成的新坐标系中,得到降维后的数据

3.找到数据分布最分散的方向(方差最大) 作为主成分(坐标轴)

Q:主成分分析需要调的参数?

  1. n_components: 该参数决定PCA算法保留的主成分个数,即降维后的数据维度。可以直接设置为一个整数,表示希望保留的维度数;也可以设置为0到1之间的小数,表示保留的主成分方差百分比;还可以设置为'mle',此时PCA会自动选择足够多的主成分以保持指定的方差百分比。
  2. copy: 该参数决定是否在运行PCA算法之前复制输入数据。如果设为True,则会复制数据,这样原始数据不会被修改;如果设为False,则直接在原始数据上进行计算,这可能会改变原始数据的内容。
  3. whiten: 该参数决定是否对降维后的数据进行白化处理。白化处理会使所有特征均值为0方差为1。
  4. svd_solver: 该参数用于指定奇异值分解(SVD)的方法。不同的求解器适用于不同大小和结构的数据集,例如'randomized'适用于大规模数据集,而'full'则适用于较小规模的数据集。
相关推荐
深圳市青牛科技实业有限公司11 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表32 分钟前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_32 分钟前
符号回归概念
人工智能·数据挖掘·回归
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
Chef_Chen1 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng1 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab