机器学习课程复习——主成分分析

Q:主成分分析的步骤?

1.数据预处理:对给定数据进行规范化(中心化处理),使得每一变量的平均值为0,方差为1

2.对数据进行正交变换:

原来由线性相关变量表示的数据通过正交变换变成由若干个线性无关的新变量表示的数据,新变量是可能的正交变换中变量的方差的和最大的,方差表示在新变量上信息的大小

(1)计算协方差矩阵:协方差矩阵描述了不同特征之间的相互关系

(2)求解特征值和特征向量:特征值表示对应特征向量方向上的方差大小,特征向量则定义了新的坐标轴方向

(3)选择主成分:根据特征值的大小选择前k个最大的特征值对应的特征向量作为主成分

(4)数据降维:将原始数据投影到选定的主成分构成的新坐标系中,得到降维后的数据

3.找到数据分布最分散的方向(方差最大) 作为主成分(坐标轴)

Q:主成分分析需要调的参数?

  1. n_components: 该参数决定PCA算法保留的主成分个数,即降维后的数据维度。可以直接设置为一个整数,表示希望保留的维度数;也可以设置为0到1之间的小数,表示保留的主成分方差百分比;还可以设置为'mle',此时PCA会自动选择足够多的主成分以保持指定的方差百分比。
  2. copy: 该参数决定是否在运行PCA算法之前复制输入数据。如果设为True,则会复制数据,这样原始数据不会被修改;如果设为False,则直接在原始数据上进行计算,这可能会改变原始数据的内容。
  3. whiten: 该参数决定是否对降维后的数据进行白化处理。白化处理会使所有特征均值为0方差为1。
  4. svd_solver: 该参数用于指定奇异值分解(SVD)的方法。不同的求解器适用于不同大小和结构的数据集,例如'randomized'适用于大规模数据集,而'full'则适用于较小规模的数据集。
相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦3 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao4 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!4 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统