[深度学习]--分类问题的排查错误的流程

原因复现:

原生的.pt 好使, 转化后的 CoreML不好使, 分类有问题。

yolov8 格式的支持情况

复制代码
                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml       .mlpackage   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite   True  False
10          TensorFlow.js         tfjs       _web_model   True  False
11           PaddlePaddle       paddle    _paddle_model   True   True
12                   NCNN         ncnn      _ncnn_model   True   True

这里可以看到CoreML 只支持cpu, 尼玛tflite也是只支持cpu的

python 复制代码
def test_coreml():
    detect_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/detect/train64/weights/best.pt'
    model_detect = YOLO(detect_weight)
    results = model_detect(source="/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.MP4",stream=True,classes=[3])

    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    model_class = YOLO(class_weight)
    # 要使用的字体
    fontFace = cv2.FONT_HERSHEY_SIMPLEX
    fontScale = 3
    thickness = 1
    img_count = 0

    for result in results:
        img_count+=1
        if img_count == 6:
            a = 1
        boxes = result.boxes  # Boxes object for bounding box outputs
        for box in boxes:
            cls = box.cls.item()
            conf = box.conf.item()
            if conf > 0.5:
                x1,y1,x2,y2 = box.xyxy.tolist()[0]
                x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
                orig_img = result.orig_img
                # H,W = orig_img.orig_shape
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}-raw.jpg".format(img_count),orig_img)
                cropped_image = orig_img[y1:y2,x1:x2]
                # res_number_class = model_class(cropped_image,save_txt=True,save=True)
                res_number_class = model_class(cropped_image, device = "cpu")
                cv2.rectangle(orig_img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) 
                for r in res_number_class:
                    if hasattr(r,"probs"):
                        if r.probs.top1conf.item() > 0.2:
                            class_name = r.names[r.probs.top1]
                            (width, height), bottom = cv2.getTextSize(class_name, fontFace, fontScale=fontScale, thickness=thickness)
                            cv2.putText(orig_img, class_name+" conf:"+str(r.probs.top1conf.item()), (x1 - width, y1-height), fontFace, fontScale, color=(0, 0, 255), thickness=thickness,
                                            lineType=cv2.LINE_AA)
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}.jpg".format(img_count),orig_img)

报错的这句话值得看一眼:

sklearn不支持,tensorflow和torch没测试过,可能会有问题。 先跑跑再说吧

复制代码
Loading /home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage for CoreML inference...
scikit-learn version 1.4.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
TensorFlow version 2.13.1 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.
Torch version 2.3.0+cu121 has not been tested with coremltools. You may run into unexpected errors. Torch 2.1.0 is the most recent version that has been tested.

所以还要降级,真是麻烦,tensorflow是因为要转android侧的模型。

这里要给个参数,来指定cpu复现

res_number_class = model_class(cropped_image, device = "cpu")

这意思是不能用pytorch 跑了吗? @todo, 然后用pytorch 2.0的环境试一下看看怎么样?@todo,

核心诉求是要把coreml的模型加载起来,看看是不是存在一样的错误

复制代码
Exception has occurred: Exception
Model prediction is only supported on macOS version 10.13 or later.
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 76, in test_coreml
    res_number_class = model_class(cropped_image, device = "cpu")
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 88, in <module>
    test_coreml()
Exception: Model prediction is only supported on macOS version 10.13 or later.
bash 复制代码
detect 参数
detect_conf = 0.5172230005264282
切割位置: x1,y1,x2,y2
1. 原始位置:[1648.0953369140625, 882.2176513671875, 1682.9732666015625, 980.842041015625]
2.强制转成int 为后面切出这个区域做准备(1648, 882, 1682, 980)

分类输出结果:

top1:64

top1conf:tensor(0.9994, device='cuda:0')

top5:[64, 53, 10, 0, 20]

top5conf:tensor([9.9943e-01, 4.8942e-04, 1.9284e-05, 1.8095e-05, 8.8464e-06], device='cuda:0')

垃圾

shit CoreML模型只能在mac 上跑, 而且只能用CoreMl 跑么??? @todo???

确实只能在mac上跑

ref:

coreml的文档:

https://developer.apple.com/documentation/coreml

coremltool的文档:

https://apple.github.io/coremltools/docs-guides/

一段python代码:

python 复制代码
import coremltools as ct
import PIL
import torch
import numpy as np

def get_x1y1x2y2(coordinate,img):
    width,height = img.size()
    center_x = int(coordinate[0] * width)
    center_y = int(coordinate[1] * height)
    img_w = int(coordinate[2]*width)
    img_h = int(coordinate[3]*height)
    return center_x, center_y, img_w, img_h

def ml_test_detect():
    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/head_person_hoop_number_v8n.mlpackage')
    print(mlmodel)
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/imgs000006-raw.jpg").resize((640,384))
    res = mlmodel.predict({"image":img})
    confidence_max_list = list(np.array(res['confidence']).argmax(axis=1))
    # array([0.86775684, 0.8630705 , 0.01861118, 0.09405255], dtype=float32)
    for row_index, class_id in enumerate(confidence_max_list):
        if class_id == 3:
            coordinate = res['coordinates'][row_index]
            x1,y1,x2,y2 = 555 - 12 / 2, 333  - 36 / 2, 555 + 12/2, 333 + 36/2
            im=img.crop((x1, y1, x2, y2))
            im.save("bbb.jpg")
    print(res)
# print(img)
def ml_test_classify():
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/bbb.jpg").resize((64,64))

    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/classification.mlpackage')
    res = mlmodel.predict({"image":img})
    max_key = max(res['classLabel_probs'], key=res['classLabel_probs'].get)
    print("class_name:",max_key, "confidence:",res['classLabel_probs'].get(max_key))
    a = 1
ml_test_classify()

在mac上安装opencv实在是太费劲了,各位自求多福吧!

用这个可以替代opencv: pip install pillow


置信度也是99.99

coreml不爽的点是必须要固定尺寸??? @todo 也许是我用惯了动态尺寸的原因。 anyway,今天调试了一天,在两个电脑上装了环境,算是搞定了。!!!

相关推荐
隐语SecretFlow1 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 小时前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 小时前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu10 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡12 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
2401_8979300614 小时前
使用Docker轻松部署Neo4j图数据库
数据库·docker·neo4j
通街市密人有14 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社14 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权16 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计