[深度学习]--分类问题的排查错误的流程

原因复现:

原生的.pt 好使, 转化后的 CoreML不好使, 分类有问题。

yolov8 格式的支持情况

复制代码
                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml       .mlpackage   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite   True  False
10          TensorFlow.js         tfjs       _web_model   True  False
11           PaddlePaddle       paddle    _paddle_model   True   True
12                   NCNN         ncnn      _ncnn_model   True   True

这里可以看到CoreML 只支持cpu, 尼玛tflite也是只支持cpu的

python 复制代码
def test_coreml():
    detect_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/detect/train64/weights/best.pt'
    model_detect = YOLO(detect_weight)
    results = model_detect(source="/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.MP4",stream=True,classes=[3])

    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    model_class = YOLO(class_weight)
    # 要使用的字体
    fontFace = cv2.FONT_HERSHEY_SIMPLEX
    fontScale = 3
    thickness = 1
    img_count = 0

    for result in results:
        img_count+=1
        if img_count == 6:
            a = 1
        boxes = result.boxes  # Boxes object for bounding box outputs
        for box in boxes:
            cls = box.cls.item()
            conf = box.conf.item()
            if conf > 0.5:
                x1,y1,x2,y2 = box.xyxy.tolist()[0]
                x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
                orig_img = result.orig_img
                # H,W = orig_img.orig_shape
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}-raw.jpg".format(img_count),orig_img)
                cropped_image = orig_img[y1:y2,x1:x2]
                # res_number_class = model_class(cropped_image,save_txt=True,save=True)
                res_number_class = model_class(cropped_image, device = "cpu")
                cv2.rectangle(orig_img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) 
                for r in res_number_class:
                    if hasattr(r,"probs"):
                        if r.probs.top1conf.item() > 0.2:
                            class_name = r.names[r.probs.top1]
                            (width, height), bottom = cv2.getTextSize(class_name, fontFace, fontScale=fontScale, thickness=thickness)
                            cv2.putText(orig_img, class_name+" conf:"+str(r.probs.top1conf.item()), (x1 - width, y1-height), fontFace, fontScale, color=(0, 0, 255), thickness=thickness,
                                            lineType=cv2.LINE_AA)
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}.jpg".format(img_count),orig_img)

报错的这句话值得看一眼:

sklearn不支持,tensorflow和torch没测试过,可能会有问题。 先跑跑再说吧

复制代码
Loading /home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage for CoreML inference...
scikit-learn version 1.4.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
TensorFlow version 2.13.1 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.
Torch version 2.3.0+cu121 has not been tested with coremltools. You may run into unexpected errors. Torch 2.1.0 is the most recent version that has been tested.

所以还要降级,真是麻烦,tensorflow是因为要转android侧的模型。

这里要给个参数,来指定cpu复现

res_number_class = model_class(cropped_image, device = "cpu")

这意思是不能用pytorch 跑了吗? @todo, 然后用pytorch 2.0的环境试一下看看怎么样?@todo,

核心诉求是要把coreml的模型加载起来,看看是不是存在一样的错误

复制代码
Exception has occurred: Exception
Model prediction is only supported on macOS version 10.13 or later.
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 76, in test_coreml
    res_number_class = model_class(cropped_image, device = "cpu")
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 88, in <module>
    test_coreml()
Exception: Model prediction is only supported on macOS version 10.13 or later.
bash 复制代码
detect 参数
detect_conf = 0.5172230005264282
切割位置: x1,y1,x2,y2
1. 原始位置:[1648.0953369140625, 882.2176513671875, 1682.9732666015625, 980.842041015625]
2.强制转成int 为后面切出这个区域做准备(1648, 882, 1682, 980)

分类输出结果:

top1:64

top1conf:tensor(0.9994, device='cuda:0')

top5:[64, 53, 10, 0, 20]

top5conf:tensor([9.9943e-01, 4.8942e-04, 1.9284e-05, 1.8095e-05, 8.8464e-06], device='cuda:0')

垃圾

shit CoreML模型只能在mac 上跑, 而且只能用CoreMl 跑么??? @todo???

确实只能在mac上跑

ref:

coreml的文档:

https://developer.apple.com/documentation/coreml

coremltool的文档:

https://apple.github.io/coremltools/docs-guides/

一段python代码:

python 复制代码
import coremltools as ct
import PIL
import torch
import numpy as np

def get_x1y1x2y2(coordinate,img):
    width,height = img.size()
    center_x = int(coordinate[0] * width)
    center_y = int(coordinate[1] * height)
    img_w = int(coordinate[2]*width)
    img_h = int(coordinate[3]*height)
    return center_x, center_y, img_w, img_h

def ml_test_detect():
    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/head_person_hoop_number_v8n.mlpackage')
    print(mlmodel)
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/imgs000006-raw.jpg").resize((640,384))
    res = mlmodel.predict({"image":img})
    confidence_max_list = list(np.array(res['confidence']).argmax(axis=1))
    # array([0.86775684, 0.8630705 , 0.01861118, 0.09405255], dtype=float32)
    for row_index, class_id in enumerate(confidence_max_list):
        if class_id == 3:
            coordinate = res['coordinates'][row_index]
            x1,y1,x2,y2 = 555 - 12 / 2, 333  - 36 / 2, 555 + 12/2, 333 + 36/2
            im=img.crop((x1, y1, x2, y2))
            im.save("bbb.jpg")
    print(res)
# print(img)
def ml_test_classify():
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/bbb.jpg").resize((64,64))

    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/classification.mlpackage')
    res = mlmodel.predict({"image":img})
    max_key = max(res['classLabel_probs'], key=res['classLabel_probs'].get)
    print("class_name:",max_key, "confidence:",res['classLabel_probs'].get(max_key))
    a = 1
ml_test_classify()

在mac上安装opencv实在是太费劲了,各位自求多福吧!

用这个可以替代opencv: pip install pillow


置信度也是99.99

coreml不爽的点是必须要固定尺寸??? @todo 也许是我用惯了动态尺寸的原因。 anyway,今天调试了一天,在两个电脑上装了环境,算是搞定了。!!!

相关推荐
haiyu_y7 分钟前
Day 58 经典时序模型 2(ARIMA / 季节性 / 残差诊断)
人工智能·深度学习·ar
Stuomasi_xiaoxin1 小时前
ROS2介绍,及ubuntu22.04 安装ROS 2部署使用!
linux·人工智能·深度学习·ubuntu
李泽辉_1 小时前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法
李泽辉_1 小时前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
HyperAI超神经2 小时前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
碎碎思2 小时前
在 FPGA 上实现并行脉冲神经网络(Spiking Neural Net)
人工智能·深度学习·神经网络·机器学习·fpga开发
Terrence Shen2 小时前
【CUDA编程系列】之01
c++·人工智能·深度学习·机器学习
AI即插即用2 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
OpenBayes2 小时前
HY-MT1.5-1.8B 支持多语言神经机器翻译;Med-Banana-50K 提供医学影像编辑基准数据
人工智能·深度学习·自然语言处理·数据集·机器翻译·图像生成
次元工程师!3 小时前
Ubuntu部署DDSP-SVC 6.3音色克隆大模型和使用(基于SVC Fusion整合包)
人工智能·深度学习·ai·svc·ddsp·音色克隆