[深度学习]--分类问题的排查错误的流程

原因复现:

原生的.pt 好使, 转化后的 CoreML不好使, 分类有问题。

yolov8 格式的支持情况

复制代码
                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml       .mlpackage   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite   True  False
10          TensorFlow.js         tfjs       _web_model   True  False
11           PaddlePaddle       paddle    _paddle_model   True   True
12                   NCNN         ncnn      _ncnn_model   True   True

这里可以看到CoreML 只支持cpu, 尼玛tflite也是只支持cpu的

python 复制代码
def test_coreml():
    detect_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/detect/train64/weights/best.pt'
    model_detect = YOLO(detect_weight)
    results = model_detect(source="/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.MP4",stream=True,classes=[3])

    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    model_class = YOLO(class_weight)
    # 要使用的字体
    fontFace = cv2.FONT_HERSHEY_SIMPLEX
    fontScale = 3
    thickness = 1
    img_count = 0

    for result in results:
        img_count+=1
        if img_count == 6:
            a = 1
        boxes = result.boxes  # Boxes object for bounding box outputs
        for box in boxes:
            cls = box.cls.item()
            conf = box.conf.item()
            if conf > 0.5:
                x1,y1,x2,y2 = box.xyxy.tolist()[0]
                x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
                orig_img = result.orig_img
                # H,W = orig_img.orig_shape
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}-raw.jpg".format(img_count),orig_img)
                cropped_image = orig_img[y1:y2,x1:x2]
                # res_number_class = model_class(cropped_image,save_txt=True,save=True)
                res_number_class = model_class(cropped_image, device = "cpu")
                cv2.rectangle(orig_img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) 
                for r in res_number_class:
                    if hasattr(r,"probs"):
                        if r.probs.top1conf.item() > 0.2:
                            class_name = r.names[r.probs.top1]
                            (width, height), bottom = cv2.getTextSize(class_name, fontFace, fontScale=fontScale, thickness=thickness)
                            cv2.putText(orig_img, class_name+" conf:"+str(r.probs.top1conf.item()), (x1 - width, y1-height), fontFace, fontScale, color=(0, 0, 255), thickness=thickness,
                                            lineType=cv2.LINE_AA)
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}.jpg".format(img_count),orig_img)

报错的这句话值得看一眼:

sklearn不支持,tensorflow和torch没测试过,可能会有问题。 先跑跑再说吧

复制代码
Loading /home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage for CoreML inference...
scikit-learn version 1.4.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
TensorFlow version 2.13.1 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.
Torch version 2.3.0+cu121 has not been tested with coremltools. You may run into unexpected errors. Torch 2.1.0 is the most recent version that has been tested.

所以还要降级,真是麻烦,tensorflow是因为要转android侧的模型。

这里要给个参数,来指定cpu复现

res_number_class = model_class(cropped_image, device = "cpu")

这意思是不能用pytorch 跑了吗? @todo, 然后用pytorch 2.0的环境试一下看看怎么样?@todo,

核心诉求是要把coreml的模型加载起来,看看是不是存在一样的错误

复制代码
Exception has occurred: Exception
Model prediction is only supported on macOS version 10.13 or later.
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 76, in test_coreml
    res_number_class = model_class(cropped_image, device = "cpu")
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 88, in <module>
    test_coreml()
Exception: Model prediction is only supported on macOS version 10.13 or later.
bash 复制代码
detect 参数
detect_conf = 0.5172230005264282
切割位置: x1,y1,x2,y2
1. 原始位置:[1648.0953369140625, 882.2176513671875, 1682.9732666015625, 980.842041015625]
2.强制转成int 为后面切出这个区域做准备(1648, 882, 1682, 980)

分类输出结果:

top1:64

top1conf:tensor(0.9994, device='cuda:0')

top5:[64, 53, 10, 0, 20]

top5conf:tensor([9.9943e-01, 4.8942e-04, 1.9284e-05, 1.8095e-05, 8.8464e-06], device='cuda:0')

垃圾

shit CoreML模型只能在mac 上跑, 而且只能用CoreMl 跑么??? @todo???

确实只能在mac上跑

ref:

coreml的文档:

https://developer.apple.com/documentation/coreml

coremltool的文档:

https://apple.github.io/coremltools/docs-guides/

一段python代码:

python 复制代码
import coremltools as ct
import PIL
import torch
import numpy as np

def get_x1y1x2y2(coordinate,img):
    width,height = img.size()
    center_x = int(coordinate[0] * width)
    center_y = int(coordinate[1] * height)
    img_w = int(coordinate[2]*width)
    img_h = int(coordinate[3]*height)
    return center_x, center_y, img_w, img_h

def ml_test_detect():
    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/head_person_hoop_number_v8n.mlpackage')
    print(mlmodel)
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/imgs000006-raw.jpg").resize((640,384))
    res = mlmodel.predict({"image":img})
    confidence_max_list = list(np.array(res['confidence']).argmax(axis=1))
    # array([0.86775684, 0.8630705 , 0.01861118, 0.09405255], dtype=float32)
    for row_index, class_id in enumerate(confidence_max_list):
        if class_id == 3:
            coordinate = res['coordinates'][row_index]
            x1,y1,x2,y2 = 555 - 12 / 2, 333  - 36 / 2, 555 + 12/2, 333 + 36/2
            im=img.crop((x1, y1, x2, y2))
            im.save("bbb.jpg")
    print(res)
# print(img)
def ml_test_classify():
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/bbb.jpg").resize((64,64))

    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/classification.mlpackage')
    res = mlmodel.predict({"image":img})
    max_key = max(res['classLabel_probs'], key=res['classLabel_probs'].get)
    print("class_name:",max_key, "confidence:",res['classLabel_probs'].get(max_key))
    a = 1
ml_test_classify()

在mac上安装opencv实在是太费劲了,各位自求多福吧!

用这个可以替代opencv: pip install pillow


置信度也是99.99

coreml不爽的点是必须要固定尺寸??? @todo 也许是我用惯了动态尺寸的原因。 anyway,今天调试了一天,在两个电脑上装了环境,算是搞定了。!!!

相关推荐
红衣小蛇妖42 分钟前
神经网络-Day46
人工智能·深度学习·神经网络
带电的小王1 小时前
【动手学深度学习】3.1. 线性回归
人工智能·深度学习·线性回归
Listennnn2 小时前
信号处理基础到进阶再到前沿
人工智能·深度学习·信号处理
且慢.5893 小时前
Python——day46通道注意力(SE注意力)
python·深度学习·机器学习
简诚3 小时前
PPHGNetV2源代码解析
python·深度学习·机器学习
my_q3 小时前
机器学习与深度学习14-集成学习
深度学习·机器学习·集成学习
是Dream呀3 小时前
SANN:融合空间注意力机制的时序特征深度建模方法
深度学习·机器学习
vlln3 小时前
【论文解读】MemGPT: 迈向为操作系统的LLM
人工智能·深度学习·自然语言处理·transformer
不爱说话郭德纲3 小时前
面试官:你给我讲讲async/await
前端·深度学习·面试
点云SLAM4 小时前
PyTorch中matmul函数使用详解和示例代码
人工智能·pytorch·python·深度学习·计算机视觉·矩阵乘法·3d深度学习