与vLLM对比 Ascend Transformer Boost吞吐延迟显存实测数据解读作为一名拥有多年AI基础设施实战经验的老兵,我今天想从工程角度深度解析CANN社区的Ascend Transformer Boost(ATB)与vLLM在Transformer推理性能上的真实较量。通过实测数据发现,ATB在长文本生成场景下显存优化尤为突出,相比vLLM可节省高达40%的显存占用,同时保持更稳定的吞吐表现。文章将结合源码级原理分析、可运行的代码demo以及企业级调优经验,带你搞懂如何在实际项目中发挥硬件最大潜力。关键亮点包括ATB的动态显存复用机制、自定义算子融合策略以及针对长序列的优化技