机器学习/深度学习训练day1

今天开始需要一点点的积累深度学习的知识了,会在这个专栏里面记录我学的东西的从0到1。

看的是李宏毅老师的机器学习课程。

很久没看数学的新东西了,死去的回忆。

机器学习的概念:

李老师对机器学习的描述很直接很深刻啊。其实就是要机器去寻找一个函数,并且是尽可能概率高的函数:

py 复制代码
f1(一段语音)  = "how are you"
f2(一张图片) = dog/cat/...
f3(围棋棋盘的落子情况) = 下一步落子的位置
f4(场景) = 一张对应的图片

然后函数有几种:(1) 函数结果为数值,为Regression。(2) 函数结果为一种选项,classification。(3) structure learning,用机器生成一些结构,比如生成一些图片。

loss函数其实就是每个训练项的偏移量的和,其实还更多的衡量方法。
loss=∑abs(resi−res)loss = \sum{abs(res_i - res)}loss=∑abs(resi−res)

假设loss和w、b的表达式为:f=wx+bf = wx + bf=wx+b

然后是举了个例子:

猜测 f = wx + b去预测视频网站上面浏览量,然后通过优化去逼近真实的结果,然后通过偏导数(斜率w对f的,先忽略b)去判断当前的w往哪边偏转,然后引入了一个值 η ,new-w = w - η * 偏导数,如果斜率是正数,说明随着w变大,loss变大,loss变大不是我们的本意,所以我们要减小w,反之,则是增大w。

同样的,对于b我们也可以这么做,然后在二维平面上去移动,刚刚因为只有一个w,现在是w、b的偏导数,所以是平面上移动,是乘以一个向量。

继续扩展,引入更多天的值(x),然后去回归更多的w,如下:
f=b+∑i=17wi∗xif = b + \sum_{i=1}^7w_i * x_if=b+∑i=17wi∗xi

其实就是不断的去猜测实际,然后调整我们的函数。

相关推荐
CV实验室2 分钟前
IEEE TGRS 2025 | 突破小波U-Net局限,ASCNet实现更精准的红外去条纹!
人工智能·计算机视觉·论文
几两春秋梦_12 分钟前
强化学习原理(二)
人工智能·机器学习
互联网之声12 分钟前
兑吧集团受邀参加2025华康会·DaJK大健康“源头创新·链动未来”创新论坛
大数据·人工智能
倔强青铜三24 分钟前
苦练Python第54天:比较运算魔术方法全解析,让你的对象“懂大小、能排序”!
人工智能·python·面试
倔强青铜三27 分钟前
苦练Python第53天:数值运算魔术方法从入门到精通
人工智能·python·面试
yaso_zhang42 分钟前
jetpack6.1 的新 pytorch 2.5.1 版本在哪里?下载中心仅提供 pytorch v2.5.0a0。
人工智能·pytorch·python
金井PRATHAMA44 分钟前
语义三角论对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Q26433650231 小时前
【有源码】基于Hadoop+Spark的AI就业影响数据分析与可视化系统-AI驱动下的就业市场变迁数据分析与可视化研究-基于大数据的AI就业趋势分析可视化平台
大数据·hadoop·机器学习·数据挖掘·数据分析·spark·毕业设计
Canace1 小时前
我们是否需要AI知识库
人工智能·aigc·ai编程
en-route1 小时前
从零开始学神经网络——前馈神经网络
人工智能·深度学习·神经网络