LLM2Vec论文阅读笔记

  • 这是篇LLM论文,用decoder-like的LLM去提取embedding
  • 文章认为,decoder-like的LLM在text embedding task表现不优的一大原因就是其casual attention mechanism,其实就是mask的问题。所以只要对现有的decoder-only LLM进行如下三步改进,就将pre-trained decoder-only LLM into a universal text encoder:
    • 双向注意力,就是取消掉MSA的mask,用全1的mask 矩阵
    • masked next token prediction (MNTP),就是用类似BERT的预训练方式,给一个序列,挖掉中间某几个单词,让模型根据剩下的单词去预测这几个单词,但是些许不同的是,我要预测第i个单词并非使用第i个token的输出来算loss,而是用它前一个token的输出来算loss,也就是i-1.这就是next token。但是我感到奇怪的是,这样不是把模型变成encoder-like 了吗,那模型还能保持原来的性能吗。。
    • unsupervised contrastive learning。即使用了上述两部,模型离embedding模型还差一点,因为模型还是在学word-level的特征,相比encoding模型在next sentence prediction任务上学sentence-level的特征,decoder模型缺乏这样的训练。用的是这样的训练方式,就是在random drop out掉一个句子的一些单词,同一个句子,drop out 两次,forward 两次,得到两个embedding,然后这两个embedding 作为positive sample算相似度,不同句子之间的作为negative sample算相似度。
    • sentence embedding 的获得方式文章做了消融试验,一种是EOS pooling,一种是mean pooling,一种是weighted mean pooling,mean pooling效果比较好。weighted mean pooling用的是GPT sentence embeddings for semantic search这篇文章中的方法,EOS pooling就是直接用最后一个token作为从这个句子提取的embedding。也就是说,如果不特别设计提取embedding的方法,naive的使用EOS的token和对token进行average pooling这两种方法中,average pooling效果更好
相关推荐
李白洗一夜26 分钟前
(新手友好)MySQL学习笔记(12):触发器,视图,三范式
笔记·学习·mysql
茫忙然7 小时前
【WEB】Polar靶场 Day7 详细笔记
笔记
张较瘦_8 小时前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
今天背单词了吗9808 小时前
算法学习笔记:17.蒙特卡洛算法 ——从原理到实战,涵盖 LeetCode 与考研 408 例题
java·笔记·考研·算法·蒙特卡洛算法
0x2118 小时前
[论文阅读]Text Compression for Efficient Language Generation
论文阅读
逐花归海.9 小时前
『 C++ 入门到放弃 』- 多态
开发语言·c++·笔记·程序人生
致***锌9 小时前
期权交易完整版教程简介
笔记
棱镜研途9 小时前
学习笔记丨卷积神经网络(CNN):原理剖析与多领域Github应用
图像处理·笔记·学习·计算机视觉·cnn·卷积神经网络·信号处理
潇-xiao14 小时前
进程状态 + 进程优先级切换调度-进程概念(5)
linux·笔记
骁的小小站14 小时前
HDLBits刷题笔记和一些拓展知识(十一)
开发语言·经验分享·笔记·其他·fpga开发