LLM2Vec论文阅读笔记

  • 这是篇LLM论文,用decoder-like的LLM去提取embedding
  • 文章认为,decoder-like的LLM在text embedding task表现不优的一大原因就是其casual attention mechanism,其实就是mask的问题。所以只要对现有的decoder-only LLM进行如下三步改进,就将pre-trained decoder-only LLM into a universal text encoder:
    • 双向注意力,就是取消掉MSA的mask,用全1的mask 矩阵
    • masked next token prediction (MNTP),就是用类似BERT的预训练方式,给一个序列,挖掉中间某几个单词,让模型根据剩下的单词去预测这几个单词,但是些许不同的是,我要预测第i个单词并非使用第i个token的输出来算loss,而是用它前一个token的输出来算loss,也就是i-1.这就是next token。但是我感到奇怪的是,这样不是把模型变成encoder-like 了吗,那模型还能保持原来的性能吗。。
    • unsupervised contrastive learning。即使用了上述两部,模型离embedding模型还差一点,因为模型还是在学word-level的特征,相比encoding模型在next sentence prediction任务上学sentence-level的特征,decoder模型缺乏这样的训练。用的是这样的训练方式,就是在random drop out掉一个句子的一些单词,同一个句子,drop out 两次,forward 两次,得到两个embedding,然后这两个embedding 作为positive sample算相似度,不同句子之间的作为negative sample算相似度。
    • sentence embedding 的获得方式文章做了消融试验,一种是EOS pooling,一种是mean pooling,一种是weighted mean pooling,mean pooling效果比较好。weighted mean pooling用的是GPT sentence embeddings for semantic search这篇文章中的方法,EOS pooling就是直接用最后一个token作为从这个句子提取的embedding。也就是说,如果不特别设计提取embedding的方法,naive的使用EOS的token和对token进行average pooling这两种方法中,average pooling效果更好
相关推荐
宵时待雨31 分钟前
STM32笔记归纳9:定时器
笔记·stm32·单片机·嵌入式硬件
m0_719084111 小时前
React笔记张天禹
前端·笔记·react.js
r i c k3 小时前
数据库系统学习笔记
数据库·笔记·学习
shandianchengzi4 小时前
【小白向】错位排列|图文解释公考常见题目错位排列的递推式Dn=(n-1)(Dn-2+Dn-1)推导方式
笔记·算法·公考·递推·排列·考公
浅念-5 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
The森5 小时前
Linux IO 模型纵深解析 01:从 Unix 传统到 Linux 内核的 IO 第一性原理
linux·服务器·c语言·经验分享·笔记·unix
tq10865 小时前
Skills 的问题与解决方案
笔记
三水不滴5 小时前
有 HTTP 了为什么还要有 RPC?
经验分享·笔记·网络协议·计算机网络·http·rpc
三块可乐两块冰5 小时前
【第二十九周】机器学习笔记三十
笔记
听麟6 小时前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务