【python】OpenCV——Color Correction

文章目录

  • [cv2.aruco 介绍](#cv2.aruco 介绍)
  • [imutils.perspective.four_point_transform 介绍](#imutils.perspective.four_point_transform 介绍)
  • [skimage.exposure.match_histograms 介绍](#skimage.exposure.match_histograms 介绍)
  • 牛刀小试
  • 遇到的问题

参考学习来自 OpenCV基础(18)使用 OpenCV 和 Python 进行自动色彩校正

cv2.aruco 介绍

一、cv2.aruco模块概述

cv2.aruco 是 OpenCV 库中用于 ArUco 标记检测和识别的模块。ArUco 是一种基于 OpenCV 的二进制标记系统,用于多种计算机视觉应用,如姿态估计、相机校准、机器人导航和增强现实等。

以下是关于 cv2.aruco 的中文文档概要,按照参考文章中的信息进行整理和归纳:

一、ArUco 标记概述

ArUco 标记是带有黑色边框的二进制正方形图像,内部主体为白色,标记根据特定的编码变化。

ArUco 标记由 ArUco 字典、标记大小和标记 ID 组成。例如,一个 4x4_100 字典由 100 个标记组成,4x4 标记大小意味着标记由 25 位组成,每个标记将有一个唯一的 ID。

二、主要函数与参数

(1)cv2.aruco.detectMarkers()

  • 功能:检测图像中的 ArUco 标记。
  • 参数:
    • 输入图像:包含 ArUco 标记的图像。
    • 字典:用于搜索的 ArUco 字典。
    • 参数(可选):检测参数,如 cv2.aruco.DetectorParameters()。
  • 返回值:
    • 标记角:检测到的标记的四个角的位置坐标。
    • 标记 ID:检测到的标记的 ID。
    • 拒绝标记(可选):未满足检测条件的标记信息。

(2)cv2.aruco.drawDetectedMarkers()

  • 功能:在图像上绘制检测到的 ArUco 标记。

  • 参数:

    • 输入图像:包含 ArUco 标记的图像。
    • 标记角:检测到的标记的四个角的位置坐标。
    • 边界颜色(可选):绘制标记边界的颜色。
  • 返回值:绘制了标记的图像。

(3)cv2.aruco.getPredefinedDictionary()

  • 功能:获取预定义的 ArUco 字典。

  • 参数:字典类型(如 aruco.DICT_ARUCO_ORIGINAL)。

  • 返回值:预定义的 ArUco 字典。

三、检测过程与参数调整

阈值化:检测的第一步是对输入图像进行阈值化。这可以通过调整 cv2.aruco.DetectorParameters() 中的相关参数来完成,如 adaptiveThreshWinSizeMin、adaptiveThreshWinSizeMax 和 adaptiveThreshWinSizeStep。

角点细化:为了提高角点检测的精度,可以使用 cornerRefinementMethod 和 cornerRefinementWinSize 参数进行角点细化。

四、使用示例

以下是一个简单的示例,演示了如何使用 cv2.aruco 检测和可视化 ArUco 标记:

python 复制代码
import cv2  
import cv2.aruco as aruco  
  
# 读取图片  
img = cv2.imread("marker.jpg")  
  
# 创建字典  
dictionary = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL)  
  
# 检测标记  
corners, ids, _ = aruco.detectMarkers(img, dictionary)  
  
# 可视化标记  
img_with_markers = aruco.drawDetectedMarkers(img, corners)  
  
# 显示结果  
cv2.imshow("ArUco detection", img_with_markers)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

五、注意事项

  • 确保已正确安装 OpenCV,并包含 cv2.aruco 模块。

  • 根据具体应用需求选择合适的 ArUco 字典和标记大小。

  • 调整检测参数以优化标记检测性能。

imutils.perspective.four_point_transform 介绍

使用前先安装 pip install imutils

imutils.perspective.four_point_transform 是 OpenCV 图像处理库的一个辅助工具,用于实现透视变换(Perspective Transformation)。透视变换可以将一个图像从一个视角转换到另一个视角,这在图像校正、文档扫描、车牌识别等任务中非常有用。

以下是关于 imutils.perspective.four_point_transform 函数的详细解释和用法:

一、函数定义

imutils.perspective.four_point_transform 函数需要两个主要参数:

  • image:要进行透视变换的原始图像。

  • pts:包含图像中感兴趣区域(ROI)四个顶点的坐标列表。这四个点定义了原始图像中的一个四边形区域,该区域将被变换成一个矩形区域。

二、使用步骤

a. 读取图像

首先,使用 OpenCV 的 cv2.imread() 函数读取要进行透视变换的图像。

b. 确定变换点

然后,需要确定要进行透视变换的 ROI 的四个顶点。这可以通过各种方法实现,如边缘检测、轮廓查找、角点检测等。

c. 调用 four_point_transform 函数

将原始图像和四个顶点的坐标列表传递给 imutils.perspective.four_point_transform 函数。函数将返回一个经过透视变换后的新图像。

d. 显示或保存变换后的图像

使用 OpenCV 的 cv2.imshow() 函数显示变换后的图像,或者使用 cv2.imwrite() 函数将其保存为文件。

三、示例代码

以下是一个简单的示例代码,展示了如何使用 imutils.perspective.four_point_transform 函数进行透视变换:

python 复制代码
import cv2  
import numpy as np  
import imutils  
 
# 读取图像  
image = cv2.imread('input.jpg')  
  
# 假设我们已经通过某种方法找到了 ROI 的四个顶点,这里我们直接给出坐标  
pts = np.array([[100, 100], [300, 100], [300, 300], [100, 300]], dtype="float32")  
  
# 进行透视变换  
warped = imutils.perspective.four_point_transform(image, pts)  
  
# 显示变换后的图像  
cv2.imshow("Warped", warped)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

四、注意事项

  • 确保 pts 列表中的坐标点按照正确的顺序排列(通常是左上角、右上角、右下角、左下角)。

  • 透视变换的结果可能会受到原始图像中 ROI 的形状和大小的影响。因此,在实际应用中,可能需要通过调整 ROI 的位置和大小来优化变换结果。

skimage.exposure.match_histograms 介绍

可参考 【python】OpenCV---Histogram Matching(9.2)

牛刀小试

素材来自于

python 复制代码
链接:https://pan.baidu.com/s/1ja5RZUiV5Hyu-Z65JEJWzg 
提取码:123a
python 复制代码
# -----------------------------
#   USAGE
# -----------------------------
# python color_correction.py
# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
from imutils.perspective import four_point_transform
from skimage import exposure
import numpy as np
import argparse
import imutils
import cv2
import sys


# -----------------------------
#   FUNCTIONS
# -----------------------------
def find_color_card(image, colors, savename=None):
    # Load the ArUCo dictionary, grab the ArUCo parameters and detect the markers in the input image
    arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_ARUCO_ORIGINAL)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)

    # Plot corners
    if savename:
        image_copy = image.copy()
        for i in range(len(corners)):  # traverse corners
            for j in range(4):  # traverse coordinates
                cv2.circle(image_copy, center=(int(corners[i][0][j][0]), int(corners[i][0][j][1])),
                           radius=10, color=colors[i], thickness=-1)
                cv2.imwrite(savename, image_copy)

    # Try to extract the coordinates of the color correction card
    try:
        # Otherwise, this means that the four ArUCo markers have been found and
        # so continue by flattening the ArUCo IDs list
        ids = ids.flatten()
        # Extract the top-left marker
        i = np.squeeze(np.where(ids == 923))  # 3
        topLeft = np.squeeze(corners[i])[0]  # array([111., 123.], dtype=float32)
        # Extract the top-right marker
        i = np.squeeze(np.where(ids == 1001))  # 2
        topRight = np.squeeze(corners[i])[1]  # array([430., 124.], dtype=float32)
        # Extract the bottom-right marker
        i = np.squeeze(np.where(ids == 241))  # 1
        bottomRight = np.squeeze(corners[i])[2]  # array([427., 516.], dtype=float32)
        # Extract the bottom left marker
        i = np.squeeze(np.where(ids == 1007))  # 0
        bottomLeft = np.squeeze(corners[i])[3]  # array([121., 520.], dtype=float32)
    # The color correction card could not be found, so gracefully return
    except:
        return None
    # Build the list of reference points and apply a perspective transform to obtain a top-down,
    # birds-eye-view of the color matching card
    cardCoords = np.array([topLeft, topRight, bottomRight, bottomLeft])
    """ for reference
    array([[111., 123.],
       [430., 124.],
       [427., 516.],
       [121., 520.]], dtype=float32)
    """
    card = four_point_transform(image, cardCoords)
    # Return the color matching card to the calling function
    return card


if __name__ == "__main__":
    # colors for corners
    colors = [
        [0, 0, 255],
        [0, 125, 255],
        [0, 255, 255],
        [0, 255, 0]
    ]

    # Load the reference image and input images from disk
    print("[INFO] Loading images...")
    ref = cv2.imread("./reference.jpg")  # (4032, 3024, 3)
    image = cv2.imread("./examples/03.jpg")  # (4032, 3024, 3)

    # Resize the reference and input images
    ref = imutils.resize(ref, width=600)  # (800, 600, 3)
    image = imutils.resize(image, width=600)  # (800, 600, 3)

    # Display the reference and input images to the screen
    cv2.imshow("Reference", ref)
    cv2.imshow("Input", image)

    # Find the color matching card in each image
    print("[INFO] Finding color matching cards...")
    refCard = find_color_card(ref, colors, "refCardPlot.jpg")  # (397, 319, 3)
    imageCard = find_color_card(image, colors, "imageCardPlot.jpg")  # (385, 306, 3)

    # If the color matching card is not found in either the reference or the input image, gracefully exit the program
    if refCard is None or imageCard is None:
        print("[INFO] Could not find color matching cards in both images! Exiting...")
        sys.exit(0)

    # Show the color matching card in the reference image and the in the input image respectively
    cv2.imshow("Reference Color Card", refCard)
    cv2.imshow("Input Color Card", imageCard)

    # cv2.imwrite("reference_color_card.jpg", refCard)
    # cv2.imwrite("input_color_card.jpg", imageCard)

    # Apply histogram matching from the color matching card in the reference image
    # to the color matching card in the input image
    print("[INFO] Matching images...")
    # imageCard = exposure.match_histograms(imageCard, refCard, multichannel=True)
    imageCard = exposure.match_histograms(imageCard, refCard, channel_axis=-1)

    # Show the input color matching card after histogram matching
    cv2.imshow("Input Color Card After Matching", imageCard)
    # cv2.imwrite("input_color_card_after_matching.jpg", imageCard)
    cv2.waitKey(0)

reference.jpg

03.jpg

refCardPlot.jpg

reference 的 corners

python 复制代码
(array([[[120., 486.],
        [155., 485.],
        [156., 519.],
        [121., 520.]]], dtype=float32), 
array([[[393., 482.],
        [427., 482.],
        [427., 516.],
        [393., 516.]]], dtype=float32), 
array([[[395., 124.],
        [430., 124.],
        [430., 161.],
        [395., 161.]]], dtype=float32), 
array([[[111., 123.],
        [147., 124.],
        [148., 160.],
        [111., 160.]]], dtype=float32))

reference 的 ids

python 复制代码
array([[1007],
       [ 241],
       [1001],
       [ 923]], dtype=int32)

reference 的 rejected

python 复制代码
len(rejected)
76

1007 左下角,红色

241 右下角,橙色

1001 右上角,黄色

923 右下角,绿色

imageCardPlot.jpg

透视变换 four_point_transform 后

reference_color_card.jpg

input_color_card.jpg

input_color_card_after_matching.jpg

遇到的问题

问题1:AttributeError: module 'cv2.aruco' has no attribute 'Dictionary_get'

解决办法:pip install opencv-contrib-python==4.6.0.66

问题2:TypeError: rescale() got an unexpected keyword argument 'multichannel'

解决方法:TypeError: rescale() got an unexpected keyword argument 'multichannel'

相关推荐
深度学习lover44 分钟前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
XiaoLeisj2 小时前
【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题
java·开发语言·java-ee
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
励志成为嵌入式工程师3 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉3 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer3 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
Peter_chq3 小时前
【操作系统】基于环形队列的生产消费模型
linux·c语言·开发语言·c++·后端
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
记录成长java5 小时前
ServletContext,Cookie,HttpSession的使用
java·开发语言·servlet
前端青山5 小时前
Node.js-增强 API 安全性和性能优化
开发语言·前端·javascript·性能优化·前端框架·node.js